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Abstract: The phosphorylation of proteins affects their functions in extensively documented circum-
stances. However, the role of phosphorylation in many interactive networks of proteins remains very
elusive due to the experimental limits of exploring the transient interaction in a large complex of
assembled proteins induced by stimulation. Previous studies have suggested that phosphorylation is
a recent evolutionary process that differently regulates ortholog proteins in numerous lineages of
living organisms to create new functions. Despite the fact that numerous phospho-proteins have
been compared between species, little is known about the organization of the full phospho-proteome,
the role of phosphorylation to orchestrate large interactive networks of proteins, and the intertwined
phospho-landscape in these networks. In this report, we aimed to investigate the acquired role of
phosphate addition in the phenomenon of protein networking in different orders of living organ-
isms. Our data highlighted the acquired status of phosphorylation in organizing large, connected
assemblages in Homo sapiens. The protein networking guided by phosphorylation turned out to be
prominent in humans, chaotic in yeast, and weak in flies. Furthermore, the molecular functions of GO
annotation enrichment regulated by phosphorylation were found to be drastically different between
flies, yeast, and humans, suggesting an evolutionary drift specific to each species.

Keywords: phosphorylation; protein networks; kinases; evolution of phospho-proteins; kinetics of
assemblages; P-sites; kinase motifs

1. Introduction

Kinases elicit the inhibition and activation of a large spectrum of biological events via
the addition of phosphate groups to amino acid residues. The end of the process involves
the action of specific phosphatases removing the phospho group by cleavage. This appears
as an essential mode of intracellular transduction pathways triggered by outside signaling
inputs [1–4]. The phosphorylation of amino acids on eukaryotic proteins targets mostly
serine, threonine, and tyrosine [5]. However, more recently, histidine is also a candidate
substrate for some kinases, which is likely underestimated because of the phospho-histidine
escaped analytical procedures due to its intrinsic chemical instability [6]. Most membrane
kinases in the metabolic pathways are tyrosine kinase receptors activated by extracellular
peptides or protein association involved in cell/cell interaction. In contrast, cytosolic serine
and threonine kinases are activated by the transduction of external activators into cells
through the transient elevation of calcium, cAMP, IP3, or any other second messengers [1–5].
The phosphorylation cascade integrates multiple regulatory steps and extends the fine
tuning of interconnected metabolic pathways. This cascade is a key phenomenon for prop-
agating the signals that take place within cells that associate multiple partners to inhibit or
activate numerous types of enzymatic activities or protein functions. Moreover, the hubs
of scaffold proteins that spatially and temporally organize the functional protein assem-
blages in eukaryotic cells are intrinsically linked to phosphorylation events, thus defining a
phospho–dependent interactome that regulates the interaction of multiple proteins and
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creates many specific functions [2,7,8]. Scaffold architectures are recruited depending on
the stimuli through a signal transduction mechanism that involves membrane embedded
receptors and adaptors acting together through docking sites. These protein assemblages
are a dynamic combinatorial state that constitutes a transient signalome [7–10]. These
transient complexes can be considered as microstates that will be dismantled after the
activation process stops. Abundant literature documents biphasic activity and allosteric
activation as a consequence of a cascade of phosphorylation events creating protein associ-
ation within the scaffold [9–12]. The first explored example is the glycogen phosphorylase
which shows a transition inactive/active form that is allosterically controlled by the pres-
ence of a phospho group on residue Ser14 [1]. All types of extracellular mediators, such as
neurotransmitters, hormones, light, neuropeptides, and cytokines, activate specific patterns
of phosphorylation inside cells [2,5,12]. Moreover, these phosphorylations are part of a
more complex landscape with other covalent modifications, such as ADP ribosylation,
acetylation, myristoylation, isoprenylation, tyrosine sulfation, and ubiquitinylation, that
create an integrated crosstalk that is difficult to apprehend due to its complexity and poor
amenability to experimental validation [4,13]. For instance, distal crosstalk that combines
arginine methylation and phosphorylation has been documented where methyl arginine
hampers a phosphorylation on a serine residue at a remote place, or the inverse in some
other cases [14–16]. During this last decade, sophisticated analytical methods have been
successfully performed using mass spectrometry, functional interaction traps, and affinity
chromatography in order to determine the high-throughput phospho-proteome within
many species, despite the difficulty of trapping some phospho sites due to their rapid
turnover, low levels or rare proteins, and the limits of technical performance [3,17,18]. The
authors assumed accordantly that 86% of all phosphorylated residues are serine, with 12%
being threonine and only 1.8% being tyrosine [5,17,18].

On the other hand, a large-scale analysis of the constraint of ideal linear sequence
motif(s) presented by the substrates of each known kinase using a systemic approach to
individually modify the order of amino acids was performed under the “Phosphorylome
Project” using yeast proteome microarrays [19,20]. The high-throughput of phospho-
tyrosine detection in different biological extracts has revealed a large proportion of non-
canonical P-sites, which can be explained by the steric modification of proteins in the
assemblage context [21,22]. All these data are in accordance with the dynamic structure
of the flexible substrates to adapt to efficient binding to kinase catalytic sites [23]. The
complexity of the phosphorylation phenomenon is drastically magnified by the fact that
many linear motifs presented by different proteins in a given configuration are often po-
tential substrates for several kinases. Since a few decades ago, authors have noticed the
link between phosphorylation of the substrate motif(s) presenting the best affinity for
kinases and the induced biological activities [7]. The very distant kinases in their mode of
biological functions, such as PKA, PKC, and CamK, turned out to have very close structural
features, with overlapping phosphorylation sites [7]. On the other side, many ideal linear
motifs are buried and/or embedded with little accessibility, and consequently, escaping
phosphorylation occurs in all the cases of biological stimulation. The 3D conformation
of proteins trapped and embedded in highly organized and transient complexes reveals
non-canonical sequences that are unexpectedly exposed high-affinity sites to kinases. These
scaffolds are dynamic and transient complexes, resulting in temporary assemblage upon
extracellular ligand binding, which induces a cascade of signaling events. One example is
the RAS G protein that activates MAPKKK (RAF kinase), which activates MAPKK (MEK1
kinase), which then activates MAPK (ERK kinase), with the overall process depending on
the scaffolding matrix that maintains the binding of the partners together [24–26]. Conse-
quently, the major phosphorylation events to which a given protein is confronted depend
on tethering by docking sites, localization in cell compartments, and insulating partners,
which limits or increases the accessibility of substrate and kinases and eliminates unwel-
come encounters. All these elements are arguments that can be evoked to take into account
these experimentally observed discrepancies.
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During the last decade, powerful technologies have drastically advanced and allowed
the realization of public databases in which the exact and exhaustive phospho sites found
by the experimental procedures for multiple species models are quantified. These cu-
rated lists, which are perfectly annotated and searchable, represent a powerful tool for the
comparison of phospho-proteome between species regarding the homologous conserved
proteins through different taxa from lower to higher orders [27–35]. The curated data are
accessible on multiple websites, such as PhosphoSitePlus [31–33], Phospho.ELM [27,28],
phosphoPep [19], PhosphoNET [36], phosphoGRID [37], and dbPAF [18] websites. In
the past, these database resources have reported phosphorylation sites in proteins from
H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe, and S. cerevisiae,
and these numbers have gradually increased due to their complementation with more
recent experimental datasets. The detailed annotations of proteins are accessible for each
entry, and the duplication or the multiple redundancy between these separate databases
coming from divergent experimental procedures constitutes a powerful method for cross
examination. The CUCKOO workgroup at Huazhong University of Science and Technology
has been working for some years on the development of an integrative database of protein
phosphorylation in animals, plants, and fungi [18,38]. In 2021, they released a database
called EPSD (http://epsd.biocuckoo.cn, accessed on 8 March 2022—[39]) that combines the
information stored in dbPPT [38], dbPAF [18], and 13 additional databases, including Phos-
phoSitePlus [31–33], Phospho.ELM [27,28], UniProt (The UniProt Consortium, 2019) [35],
PhosphoPep [19], PhosphoGRID [37], dbPTM [23], FPD [40], HPRD [34], MPPD [41],
P3DB [42], PHOSIDA [30], PhosPhAt [43], and SysPTM [44]. Altogether, EPSD contains
1,616,804 experimentally identified phosphorylation sites in 209,326 phosphoproteins from
68 eukaryotic species.

Extremely abundant literature has therefore documented the biology of phospho-
proteome. Numerous individual orthologous phospho-proteins have been compared in
different contexts and in different species. However, little is known about how phospho-
rylation operates with large scale genomes and the full spectrum of proteomes. Very rare
studies have explored the overall interacting protein landscapes induced by thousands
of P-sites together that coincidentally act with each other. In a reverse effort compared to
the general trend, which consists of analyzing proteins one by one with their few partners,
we investigated the idea that global phosphorylation analysis might unmask unsuspected
biological principles. Therefore, we aimed to highlight whether massive and integrated
P-sites coincidentally contribute to the creation of matrices of proteins without which their
function would not be fulfilled.

In this report, we used bioinformatics tools to investigate, using a wide genome scale,
the full phosphoproteome of a few generic biological models with respect to major inte-
grated functions. First, we explored whether the degree of phosphorylation of hortologs is
conserved across phylogenetically distant species. Second, we determined the comparative
rate of phospho-sites in hortolog proteins for each of these species. Then, we investigated
the correlation between the degree of phosphorylation of proteins and the size of interacting
networks in which they were a component, which we validated using a statistically signifi-
cant p-value. The protein networks were described by the number of nodes, edges, and the
average number of neighbors, according to the standard tools of bio-informatic analysis.
The GO annotation of molecular functions was equally scrutinized based on the degree of
phosphorylation of proteins. Finally, the integrated substrate maps specific to six different
kinases families were graphically superimposed to highlight the significant overlapping
of P-sites within protein networks. In addition, an extended analysis of the time course
of phospho-proteome induced by EGF factor was performed as an example to show the
time-dependent, specific, and changing networks. The multi components and systemic
analysis reported in this work show substantial divergence between higher and lower
organisms regarding the role of phosphate addition to orchestrate larger protein complexes
and phosphorylation dependent GO annotation specificities. All these elements argue in fa-
vor of an evolutionary achievement in higher organisms that has selected phosphorylation
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for which more phospho-sites in proteins guide larger sizes of interaction networks. These
multiple and complementary computational analyses highlight the evidence supporting a
meta-organization of proteins in different modalities of matrix, orchestrated by thousands
of P-sites coincidentally acting with each other.

2. Results

Large scale proteome was scrutinized in different model species representing major
orders and taxa to determine a survey regarding their respective phosphorylation. The
distribution of the number of phosphorylation sites per 1000 amino acids was carried out,
and the results were compared between species. We aimed to investigate whether the phos-
phorylation status was correlated with the size of proteins and whether differences occurred
between lower and higher species. Proteome was also divided in two panels: homologous
protein found in other species versus non-homologous proteins with any resemblance else-
where to establish whether phosphorylation targeted mainly one group or the other. Results
are summarized in Table 1. Briefly, the main information of the computational searching
on the large-scale proteome indicated few unambiguously trends, including the following:
the Homo sapiens, Mus musculus proteome are massively phosphorylated (90% and 80%,
respectively), Drosophila and C. elegans are weakly phosphorylated (38% and 28%, respec-
tively), A. thaliana was moderately phosphorylated, and Danio rerio presents a uniquely low
percentage (9%). Finally, the yeast Saccharomyces cerevisiae was found, surprisingly, at the
level of humans and mice (87%). The analysis on the subcategories (homologous versus
non-homologous proteins) showed no trends in phosphorylation status in each model
species, which suggests that the addition of phosphate is not related to an ancient and
primitive mechanism linked to the conservation of proteins through the evolutionary drift
of living organisms. Few more elements highlighted by the computational analysis were
striking. Homologous proteins found phosphorylated in Homo sapiens and Mus musculus
showed a high percentage of the total protein (85% and 69%, respectively), whereas this
percentage fell drastically in Danio rerio (6%), and significantly in Drosophila, C. elegans, and
Arabidopsis (16%, 14%, and 19%, respectively). This result should be underestimated by
the fact that in humans, the homologous protein component is massively represented (the
non-homologous component represents less than 10% of the total). Moreover, the phospho-
rylated proteins had a higher molecular weight than the non-phosphorylated ones, which
was constantly observed in all the species. The average length for the non-phosphorylated
versus phosphorylated was 189/590 for Homo sapiens, 286/612 for Mus musculus, 535/847
for Danio rerio, 408/582 for Drosophila, 349/542 for Arabidopsis, and finally, 275/556 for
Saccharomyces cerevisiae. This strongly suggests that phosphate addition occurs in larger
sizes of proteins likely orchestrating the functionality of subdomains. The distribution
of phosphate groups added to the individual protein in the seven species in proposed in
Figure 1.

For this purpose, two parameters were graphically plotted: the number of phospho-
rylated sites per 1000 amino acids protein units and the frequency of such events in the
whole proteome. Figure 1 shows the log–log plot of the relationship between these two
entities. Interestingly, the observed parallelism of the distribution of phosphorylation
sites did not correlate with the distance between species in a phylogenetic tree. The three
most phosphorylated species already found in Table 1, namely H. sapiens, M. musculus and
S. cerevisiae, showed a very similar slope. The two least phosphorylated species, D. rerio
and C. elegans, presented an equally similar slope. Finally, A. thaliana and D. melanogaster,
the two medium phosphorylated species, showed the same profile. What is remarkable
is that the similarity of the slopes on the log–log plot between the seven analyzed species
suggests that the different orders are highly uniform and homogenous.
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Table 1. Statistics about the proteins of the seven studied species. 
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169,976 
(100.00%) 

175,752 
(100.00%) 

95,752 
(100.00%) 
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(100.00%) 
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(100.00%) 
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(100.00%) 
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   avg. weight (dalton) 63,239.35 60,899.63 63,738.36 61,708.17 55,752.23 58,769.06 50,616.29 
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Figure 1. A log–log plot illustrating the relationship between the number of phosphorylation sites
per 1000 amino acids and its frequency for seven species. The figure shows a clustering of species
into three groups that share similar phosphorylation rates and have a very close distribution of
phosphorylation sites.

Table 1. Statistics about the proteins of the seven studied species.

H. sapiens M. musculus D. rerio D. melanogaster C. elegans S. cerevisiae A. thaliana

All proteins

count (%) 157,160
(100%)

169,976
(100.00%)

175,752
(100.00%)

95,752
(100.00%)

81,312
(100.00%)

40,952
(100.00%)

122,984
(100.00%)

avg. length 567.70 545.88 569.25 553.17 494.47 519.80 453.27
avg. weight (dalton) 63,239.35 60,899.63 63,738.36 61,708.17 55,752.23 58,769.06 50,616.29
avg. nb of phos. sites 26.33 12.16 0.40 3.00 1.78 15.60 3.10
avg. nb of phos. sites/1000aa 44.08 20.14 0.68 4.44 2.87 28.76 6.79

Non-phosphorylated

count (%) 8760
(5.57%)

34,880
(20.52%)

158,816
(90.36%)

58,704
(61.31%)

58,504
(71.95%)

5312
(12.97%)

56,992
(46.34%)

avg. length 189.81 286.04 535.28 408.51 403.88 275.86 349.89
avg. weight (dalton) 21,073.58 32,059.07 60,001.19 45,756.87 45,696.83 31,230.69 39,157.83

Non-phos. & homologous

count (%) 4752
(3.02%)

24,856
(14.62%)

84,888
(48.30%)

14,392
(15.03%)

22,768
(28.00%)

3672
(8.97%)

17,920
(14.57%)

avg. length 217.63 308.83 537.63 467.38 462.18 306.98 394.12
avg. weight (dalton) 24,179.38 34,604.76 60,277.16 52,470.09 52,047.64 34,790.76 44,152.47

Non-phos. &
non-homologous

count (%) 4008
(2.55%)

10,024
(5.90%)

73,928
(42.06%)

44,312
(46.28%)

35,736
(43.95%)

1640
(4.00%)

39,072
(31.77%)

avg. length 156.82 229.55 532.57 389.38 366.73 206.17 329.60
avg. weight (alton) 17,391.26 25,746.64 59,684.32 43,576.50 41,650.63 23,259.61 36,867.08

Phosphorylated

count (%) 148,400
(94.43%)

135,096
(79.48%)

16,936
(9.64%)

37,048
(38.69%)

22,808
(28.05%)

35,640
(87.03%)

65,992
(53.66%)

avg. length 590.01 612.97 887.84 782.39 726.85 556.15 542.56
avg. weight (alton) 65,728.38 68,345.88 98,783.34 86,983.62 81,544.98 62,873.55 60,512.04
avg. nb of phos. Sites 27.88 15.31 4.14 7.75 6.34 17.93 5.78
avg. nb of phos. Sites/1000aa 46.69 25.34 7.02 11.49 10.25 33.05 12.65

Phos. & homologous

count (%) 135,000
(85.90%)

118,872
(69.93%)

10,576
(6.02%)

16,248
(16.97%)

11,712
(14.40%)

28,584
(69.80%)

24,152
(19.64%)

avg. length 603.56 623.26 824.95 814.92 702.19 561.02 554.76
avg. weight (alton) 67,246.82 69,484.93 91,920.53 90,881.20 78,902.92 63,482.53 61,901.72
avg. nb of phos. Sites 28.73 15.74 4.05 8.11 5.57 15.97 5.65
avg. nb of phos. Sites/1000aa 46.93 25.43 7.18 11.92 9.68 30.14 11.75
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Table 1. Cont.

H. sapiens M. musculus D. rerio D. melanogaster C. elegans S. cerevisiae A. thaliana

Phos. & non-homologous

count (%) 13,400
(8.53%)

16,224
(9.54%)

6360
(3.62%)

20,800
(21.72%)

11,096
(13.65%)

7056
(17.23%)

41,840
(34.02%)

avg. length 453.47 537.58 992.41 756.98 752.89 536.44 535.52
avg. weight (alton) 50,430.62 60,000.12 110,195.46 83,939.00 84,333.71 60,406.56 59,709.85
avg. nb of phos. Sites 19.35 12.13 4.30 7.47 7.14 25.86 5.85
avg. nb of phos. Sites/1000aa 44.19 24.63 6.76 11.15 10.84 44.87 13.18

The table shows the average length and weight of proteins distributed according to different criteria (including
the presence of a phosphorylation site and the existence of homologous proteins in another species). For
phosphorylated proteins, the average number of phosphorylation sites and the average number of phosphorylation
sites per 1000 amino acids are also specified.

2.1. Conservation of Phosphorylation in Homolog Proteins of Phylogenetically Distant Species

The degree of conservation of the phospho-sites on the heterologous proteins was
investigated between the seven species representing different orders and taxa by computa-
tional search and quantification based on a full scale proteome. For each pair of analyzed
species, we calculated a Spearman correlation between the phosphorylation rate of homol-
ogous proteins (see Materials and Methods). Figure 2 summarizes the results presented in
the form of a heatmap where correlations were considered strong for values > 0.6, moderate
for values between 0.6 and 0.4 and weak for values between 0.4 and 0.2. All correlations
were positive. At the top of the heatmap, the phylogenetic tree of the seven species is
drawn. The importance of the correlation was roughly linked to the distance of the species
on the phylogenetic tree. The only exception was Danio rerio which was, surprisingly, the
species whose distribution of phosphorylation sites was the furthest from humans.
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Times of divergence (million years ago) are indicated at the nodes in the tree.

We expected to observe a correlation between the number of phosphorylation sites per
protein and their lengths (or masses). We investigated whether this correlation between
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masses and the number of phosphorylation sites for each phosphorylated and orthologous
protein was divergent within each species. Figure S1 plots the regression line for each
species as an index of phosphorylation density. The slopes of the regression lines were
found in accordance with the distances in the phylogenetic tree, except for Danio rerio. To
reduce the influence of outliers on the determination of the regression line, we zoomed
the figure to select only proteins with a mass of less than 500,000 daltons and with less
than 500 phosphorylation sites. Results, presented in Figure 3A, confirmed the marked
differences between species.
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The computational analysis of full scale proteome was pursued to investigate the 
comparative analysis of phosphorylation in proteins that have a homolog in another 
species versus those without a homolog. Figures 3B and S2 show the data for Homo sapiens. 
This analysis confirms that proteins with homologs were much longer than those without. 
In terms of the distribution of phosphorylation sites, we noticed that proteins with 
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protein is very low in these two species (humans and mice); therefore, a bias for rigorous 

Figure 3. A plot of the relationship between masses and the number of phosphorylation sites. The
study was carried out for each phosphorylated protein with a mass of less than 500,000 daltons
and with less than 500 phosphorylation sites. (A) A plot regrouping the seven studied species.
Regressions lines are drawn with a confidence interval of 0.95 (highlighted using translucent bands
around the regression line). (B) A plot of phosphorylated proteins in Homo sapiens. Data in blue are
for proteins that have at least one homolog in another species, while data in orange are for proteins
without homolog. Regressions lines are drawn with a confidence interval of 0.95 (highlighted using
translucent bands around the regression line).
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2.2. Comparative Rate of Phospho-Sites in Homolog Versus Unique Proteins for Each
of These Species

The computational analysis of full scale proteome was pursued to investigate the
comparative analysis of phosphorylation in proteins that have a homolog in another species
versus those without a homolog. Figures 3B and S2 show the data for Homo sapiens. This
analysis confirms that proteins with homologs were much longer than those without. In
terms of the distribution of phosphorylation sites, we noticed that proteins with homologs
were slightly more phosphorylated than those without. The same observation applied to
Mus musculus (see Figures 4A and S3). The proportion of non-homologous protein is very
low in these two species (humans and mice); therefore, a bias for rigorous interpretation
is possible. For Danio rerio, the opposite was observed as proteins without homologs
were longer than those with homologs, with similar distribution of phosphorylation sites
(see Figures 4B and S4). The same observation related to Danio rerio applied to Drosophila
melanogaster (Figures 4C and S5). For Caenorhabditis elegans, the proteins with homologs were
shorter and also had fewer phosphorylation sites (see Figures 4D and S6). For Saccharomyces
cerevisiae, proteins without homologs were shorter than those with homologs and had
significantly more phosphorylation sites (see Figures 4E and S7). For Arabidopsis thaliana,
a pattern where the proteins without homologs were longer than the others with the
regression lines almost in superposition was observed (see Figures 4F and S8). Altogether,
these data argue in favor of an evolutionary drift inside each species that exhibits, to some
extent, little coherence and a chaotic history.

2.3. Correlation between the Degree of Phosphorylation of Proteins and the Size of
Interacting Networks

Comparative evolutionary analyses based on computational tools were performed to
extract phosphorylation information to uncover the role of phosphate addition in mastering
a larger network of interacting proteins. For Homo sapiens, we divided the 19,645 proteins in
our dataset into deciles according to the number of phosphorylation sites. Thus, there were
2368 proteins with zero, one, or two phosphorylation sites in the first decile, 2130 proteins
between three and five phosphorylation sites in the second decile, etc. (see Table 2).

Table 2. Interaction data for human proteins depending on their rate of phosphorylation.

Decile 1 2 3 4 5 6 7 8 9 10

ranges [0, 2] [3, 5] [6, 8] [9, 11] [12, 14] [15, 19] [20, 26] [27, 37] [38, 61] [62, 2518]
nb nodes 2368 2130 1985 1818 1538 2042 1964 1892 1984 1924
nb edges 1455 1607 2021 2217 1499 2840 3819 4240 7688 9188
avg. neighbors 1.229 1.509 2.036 2.439 1.950 2.781 3.889 4.482 7.750 9.551
nb connected 120 135 89 83 80 76 52 39 33 22
% singletons 67.95 55.77 48.51 46.97 48.57 42.36 37.58 33.51 23.14 15.96

Human proteins are divided in deciles depending on the number of their phosphorylation site. Interaction data
were collected using the String database with a confidence score > 0.7. For each decile, the number of proteins
(nb nodes), the number of interactions between the proteins (nb edges), the average number of neighbors of
each protein with interactions (avg. neighbors), the number of connected components (nb connected), and the
percentage of proteins with no interactions (% singletons) are given.

The interactions between proteins in the same decile were calculated using the String
database and a confidence score greater than 0.7. This determined the number of in-
teractions between proteins (edges), the average number of interactions of each protein
(avg. Neighbors), the number of connected components (nb. Connected), and the percent-
age of proteins with no interactions (% non-connected nodes). The graphical representation
of the average number of interactions for each decile is given in Figure 5A.
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Figure 4. A comparative plot of the relationship between masses and the number of phosphorylation sites
for six species of different order. Each phosphorylated protein with a mass of less than 500,000 daltons and
with less than 500 phosphorylation sites was considered. Data in blue are for proteins that have at least
one homolog in another species, while data in orange are for proteins without homolog. Regressions lines
are drawn with a confidence interval of 0.95 (highlighted using translucent bands around the regression
line). The species under consideration are (A) Mus musculus, (B) Danio rerio, (C) Drosophila melanogaster,
(D) Caenorhabditis elegans, (E) Saccharomyces cerevisiae, and (F) Arabidopsis thaliana.
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are divided into quartiles. The height of the first bar, which represents the category of non-
phosphorylated proteins, cannot be compared to the others because it contains seven times more 
proteins and the probability of obtaining interactions in this network is much higher. (C) For S. 
cerevisiae, each bar represents a quintile. 
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For this species, the non-phosphorylated proteins constitute the first bin, and the remaining proteins 
are divided into quartiles. Interaction data were collected using the String database with a 
confidence score > 0.7. For each bin, the number of proteins (nb nodes), the number of interactions 
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(avg. neighbors), the number of connected components (nb connected), and the percentage of 
proteins with no interactions (% singletons) are given. 

  

Figure 5. Average number of interactions per protein in function of its number of phosphorylation
sites. Each bar represents a bin. The closed intervals, in terms of the number of phosphorylation sites
defining a bin, are given on the x-axis. The average number of interactions for proteins belonging to
each bin is given in the y-axis. (A) For H. sapiens, each bar represents a decile. (B) For D. melanogaster,
the non-phosphorylated proteins constitute the first bin, and the remaining proteins are divided into
quartiles. The height of the first bar, which represents the category of non-phosphorylated proteins,
cannot be compared to the others because it contains seven times more proteins and the probability
of obtaining interactions in this network is much higher. (C) For S. cerevisiae, each bar represents
a quintile.

We noticed that the average number of interactions was correlated with the number of
phosphorylation sites (or the more phosphorylation sites there were on a protein, the more
interactors it had). In humans, the massive networks measured by the number of edges,
nodes, and averaged neighbors were found to be clearly dependent on and correlated with
the increased number of phospho-sites per protein.

We chose to do the same type of analysis for two other species: D. melanogaster and
S. cerevisiae. D. melanogaster contains a large proportion of proteins without a phosphory-
lation site (more than 60% of the total), which makes it impossible to divide into deciles.
We chose to consider the non-phosphorylated proteins as a category and to split the rest
into quartiles. The data for D. melanogaster are specified in Table 3. We noticed a relative
correlation between the average number of interactions and the number of phosphory-
lation sites, but this trend does not seem highly significant compared to Homo sapiens.
The graphical representation of the average number of interactions for each category of
phospho site density is given in Figure 5B (the high number of interactions obtained for
the non-phosphorylated proteins might be biased because there are seven times more
proteins in this category). For S. cerevisiae, the phospho-proteins was divided into quintiles
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(see Table 4). In this organism, a relative correlation between phosphorylation sites and in-
teractions was observed, although the quintile of the most phosphorylated proteins showed
a relative decrease. As for humans, the number of edges and neighbors increased with
phosphorylation and were inversely correlated with the number of connected components
for these two species (see Table 4 and Figure 5C).

Table 3. Interaction data for D. melanogaster proteins depending on their rate of phosphorylation.

Ranges 0 1 [2, 3] [4, 8] [9, 454]

nb nodes 7338 1111 1273 1110 1137
nb edges 28,323 2232 2965 3156 4514
avg. neighbors 7.72 4.02 4.66 5.69 7.94
nb connected 123 38 36 15 17
% singletons 35.12 41.49 34.72 29.46 19.88

For this species, the non-phosphorylated proteins constitute the first bin, and the remaining proteins are divided
into quartiles. Interaction data were collected using the String database with a confidence score > 0.7. For each
bin, the number of proteins (nb nodes), the number of interactions between the proteins (nb edges), the average
number of neighbors of each protein with interactions (avg. neighbors), the number of connected components
(nb connected), and the percentage of proteins with no interactions (% singletons) are given.

Table 4. Interaction data for S. cerevisiae proteins depending on their rate of phosphorylation.

Ranges [0, 1] [2, 5] [6, 11] [12, 23] [24, 227]

nb nodes 1020 1029 1072 987 1011
nb edges 3190 3628 7945 8366 5508
avg. neighbors 6.25 7.05 14.82 16.95 10.90
nb connected 29 29 17 16 8
% singletons 14.12 11.47 20.15 6.18 12.56

For this species, proteins are divided in quintiles depending on the number of their phosphorylation site. Interac-
tion data were collected using the String database with a confidence score > 0.7. For each quintile, the number of
proteins (nb nodes), the number of interactions between the proteins (nb edges), the average number of neighbors
of each protein with interactions (avg. neighbors), the number of connected components (nb connected), and the
percentage of proteins with no interactions (% singletons) are given.

2.4. GO Annotations Analysis Based on the Degree of Phosphorylation of Proteins

The same categories defined by the degree of phosphorylation (including deciles for
humans and quintiles for flies and yeast) were statistically assigned to a GO enrichment
under the terms of a biological process. We found that in humans, non-phosphorylated
proteins (those in the first two deciles) have a role in the immune response and perception.
The most phosphorylated proteins (belonging to the last four deciles) have multiple regula-
tory roles (transcription, cell cycle, cellular response, splicing, and chromatin remodeling)
and functions related to development and morphogenesis. All the significant annotations
(which are associated with an adjusted p-value < 0.05) are listed in Table S1. Overall, we saw
that significant annotations were much more numerous for the deciles corresponding to the
most phosphorylated proteins, including: 780 for decile 10, 369 for decile 9, 21 for decile 8,
15 for decile 7, and two for decile 6 were found. No significant enrichment was found for
deciles 4 and 5, and there were three significant annotations for decile 3 and 2, and 15 for
decile 1. Table S2 contains a list of selected annotations for humans. A visualization of the
p-values associated with the selected annotations for each of the deciles is proposed as a
heatmap in Figure 6.
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Figure 6. A heatmap of selected GO enrichments identified for human proteins grouped by decile 
based on their number of phosphorylation sites. The figure lists the significant GO enrichments by 
biological process terms for each decile of human proteins defined according to their degree of 
phosphorylation. Each table row represents a different GO term, and each column represents a 

Figure 6. A heatmap of selected GO enrichments identified for human proteins grouped by decile
based on their number of phosphorylation sites. The figure lists the significant GO enrichments
by biological process terms for each decile of human proteins defined according to their degree
of phosphorylation. Each table row represents a different GO term, and each column represents a
different decile. The numbers in the cells are the log10 p-values with FDR correction of the enrichment
of a decile with a specific GO term. Empty cells are associated with a log10 p-value of 0, which
corresponds to a p-value of 1 and is not significant. In humans, non-phosphorylated proteins (those
in the first two deciles) have a role in the immune response and perception. The most phosphorylated
proteins (belonging to the last four deciles) have multiple regulatory roles and functions related to
development and morphogenesis.

In flies and yeast, paradoxically, there were more annotations on the list of no or low
phosphorylated proteins than on the most phosphorylated ones. For yeast, only the first two
quintiles (the least phosphorylated proteins) were significantly annotated with GO terms.
Significant annotations for humans did not emerge for flies and yeast. However, there
were shared annotations between these two latter organisms like the ones corresponding
to mitochondrial translation. Remarkably, in flies and yeast, we found GO annotations
mostly in the low or very low-level quantiles of phosphorylation, which appeared to be the
opposite in humans. All the significant annotations for D. melanogaster and S. cerevisiae are
listed in Tables S3 and S4 respectively. The corresponding heatmaps are in Figures 7 and 8.
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of phosphorylation. Each table row represents a different GO term, and each column represents a 
different bin. The numbers in the cells are the log10 p-values with FDR correction of the enrichment 
of a bin with a specific GO term. Empty cells are associated with a log10 p-value of 0, which 
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Figure 7. A heatmap of selected GO enrichments identified for D. melanogaster proteins grouped according
to their number of phosphorylation sites. The figure lists the significant GO enrichments by biological
process terms for each bin of D. melanogaster proteins defined according to their degree of phosphorylation.
Each table row represents a different GO term, and each column represents a different bin. The numbers
in the cells are the log10 p-values with FDR correction of the enrichment of a bin with a specific GO term.
Empty cells are associated with a log10 p-value of 0, which corresponds to a p-value of 1. In the flies, the
less phosphorylated proteins (those in the first two bins) have a role in protein formation and transport.
Few annotations are associated with the most phosphorylated proteins.
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Figure 8. A heatmap of selected GO enrichments identified for S. cerevisiae proteins grouped by
quintile based on their number of phosphorylation sites. The figure lists the significant GO enrich-
ments by biological process terms for each quintile of S. cerevisiae proteins defined according to
their degree of phosphorylation. Each table row represents a different GO term, and each column
represents a different quintile. The numbers in the cells are the log10 p-values with FDR correction of
the enrichment of a bin with a specific GO term. Empty cells are associated with a log10 p-value of 0,
which corresponds to a p-value of 1. In the yeast, the less phosphorylated proteins (those in the first
two quintiles) have a role in protein formation and transport. Oligosaccharide biosynthetic processes
are associated with proteins in the second quintile, and no significant annotation are found for the
most phosphorylated proteins.



Int. J. Mol. Sci. 2022, 23, 14429 14 of 24

2.5. Integrated Substrate Map for Six Different Kinases Families Highlights a Significant
Overlapping

The site http://kinase.com/wiki/index.php/Kinase_classification (accessed on 18
March 2022) was used to perform a survey based on the full spectrum of proteomes to
determine the extent to which the kinases had overlapping targets. Among these 14 groups
of kinases, eight had identified targets that were listed in publicly available databases for
different species. The number of phosphorylated proteins by this later group is listed in
Table S5. The whole dataset represents a total of 7073 proteins. From the list in Table S5,
we distinguished that six kinases had more than 3000 targets (AGC, CAMK, STE, CMGC,
TK, and CK1) and three kinases had less than 1500 ones (TKL, Other, and Atypical).
Plotting of the phosphorylated proteins by the six major kinase groups in a Euler diagram
representation shows an intertwined complex network which mixes strict specificity and
dense overlapped targeting. The representation is shown in Figure 9.
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of the diagram is specified, followed by the identifiers of the kinase groups that phosphorylate them. 
In dense areas, the content of some regions is taken out of the body of the diagram and linked to the 
corresponding region by arrows. The area of each region in the diagram is proportional to the 
number of elements included. 

A large number of proteins were phosphorylated by all kinase groups, but the TK 
(Tyrosine Kinase) group differed from the others due to the fact that it phosphorylated 
restrictively and specifically most of its proteins targets that were insensitive to the action 
of the other kinase groups. In order to simplify this very dense graphical representation, 
we kept only the most prominent kinases, i.e., those that target more than 2% of the total 
proteins. By doing this, we obtained a drastic simplification. We noticed that the STE, CK1, 
and CAMK groups phosphorylated exactly the same group of proteins. The same is true 
for a group composed of Other, TKL, and Atypical. By regrouping these clusters, their 
overlapping, and their intersection, we propose a simplified graph that highlights the 
intertwined landscape of interconnected phosphorylation processes (see Figure 10). 
Figure 10 shows that some proteins were only phosphorylated by kinases belonging to 
the TK, CMGC, and AGC categories. Two hundred and twenty-four identified proteins 
(in the center of the diagram) were phosphorylated by all kinase groups. Interestingly, the 
targets of Other, TKL, and Atypical kinase groups were also targets for all the other 
kinases with any restrictive specificity. The two remaining groups of proteins were one 
group phosphorylated by all kinase groups except Other, TKL, and Atypical and the other 
group phosphorylated by STE, CK1, CAMK, CMGC, and AGC. 

Figure 9. An euler diagram of the proteins phosphorylated by six major kinase groups. Euler diagram
representation of the overlapping sets of proteins phosphorylated by the groups of kinases AGC,
CAMK, CK1, CMGC, STE, and TK. In the figure, each kinase group is identified by a number between
brackets (from 1 for AGC to 6 for TK). The number of proteins corresponding to each region of the
diagram is specified, followed by the identifiers of the kinase groups that phosphorylate them. In
dense areas, the content of some regions is taken out of the body of the diagram and linked to the
corresponding region by arrows. The area of each region in the diagram is proportional to the number
of elements included.

A large number of proteins were phosphorylated by all kinase groups, but the TK
(Tyrosine Kinase) group differed from the others due to the fact that it phosphorylated
restrictively and specifically most of its proteins targets that were insensitive to the action
of the other kinase groups. In order to simplify this very dense graphical representation,
we kept only the most prominent kinases, i.e., those that target more than 2% of the total
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proteins. By doing this, we obtained a drastic simplification. We noticed that the STE,
CK1, and CAMK groups phosphorylated exactly the same group of proteins. The same
is true for a group composed of Other, TKL, and Atypical. By regrouping these clusters,
their overlapping, and their intersection, we propose a simplified graph that highlights
the intertwined landscape of interconnected phosphorylation processes (see Figure 10).
Figure 10 shows that some proteins were only phosphorylated by kinases belonging to
the TK, CMGC, and AGC categories. Two hundred and twenty-four identified proteins
(in the center of the diagram) were phosphorylated by all kinase groups. Interestingly,
the targets of Other, TKL, and Atypical kinase groups were also targets for all the other
kinases with any restrictive specificity. The two remaining groups of proteins were one
group phosphorylated by all kinase groups except Other, TKL, and Atypical and the other
group phosphorylated by STE, CK1, CAMK, CMGC, and AGC.
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Figure 10. A filtered Euler diagram of the significant groups of proteins phosphorylated by five
major kinase groups. The Euler diagram represents the overlapping sets of proteins phosphorylated
by the most prominent kinase groups, i.e., those that target more than 2% of the total proteins. The
STE, CK1, and CAMK groups, which phosphorylate exactly the same proteins, are grouped in a
same category. The same goes for the groups of kinases Other, TKL, and Atypical. In the figure, each
kinase group is identified by a number between brackets (from 1 for TK to 5 for AGC). The number
of proteins corresponding to each region of the diagram is specified, followed by the identifiers of the
kinase groups that phosphorylate them. The area of each region in the diagram is proportional to the
number of elements include.

To further investigate the clustering of the Figure 10, a GO annotation for enrich-
ment analysis was performed with the corresponding lists (see Table S6). The functions
of AGC-phosphorylated proteins are more diverse and concern biological regulation
(FDR = 2.6 × 10−4), signaling (FDR = 1.2 × 10−3), response to stimulus (FDR = 1.2 × 10−3),
or localization (FDR = 4 × 10−3). Highly significant annotations were found for proteins
phosphorylated by all kinase groups, such as the negative and positive regulation of cellular
process (FDR < 1 × 10−46), signal transduction (FDR = 8.75 × 10−41), response to organic
substance (FDR = 1.40 × 10−46), or cellular component organization (FDR = 1.86 × 10−37).
Proteins phosphorylated by all groups of kinases except Other, TKL, and Atypical had
few significant annotations among; therefore, we can mention cytoskeleton organization
(FDR = 2.3 × 10−4). Proteins phosphorylated by STE, CK1, CAM4, CMGC, and AGC also
had few significant annotations, such as chromatin organization (FDR = 3.68 × 10−3) or
RNA processing (FDR = 3.68 × 10−3).
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2.6. Time Course of Phospho-Proteome and Time Dependent Specific Changes in Networks Induced
by EGF Factor

Finally, we compared changing and non-changing subsets of the phospho-proteome
using as example human Phospho-sites that were unaffected or affected by the stimulation
of EGF in a culture cell system in a series of time course-controlled experiments. The aim
of this study was to visualize the changes in the networks of correlated and interactive
proteins upon a stimulus action in a time dependent manner. Data relative to the variation
of phosphorylation following EGF exposure on Hela cells were measured using SILAC
(stable isotope labelling by amino acids in cell culture) at six time-points: after 1 min,
5 min, 10 min, 15 min, 20 min, and 30 min, were retrieved from the qPhos database.
These data were then processed to associate each protein with a count that corresponds
to the variation in phospho-sites at each time point (see Materials and Methods). The
summary of the number of phosphorylations per protein for each time point is specified
in Table S7. As a function of time after EGF exposure, the change in the number of
phosphorylations per protein ranged from zero (no change) to 20 (the maximum measured
for the Desmoyokin protein—AHNAK) after 10 min. Using the data in Table S7, it is easy
to list, for each time point, the proteins that were the most differentially phosphorylated.
However, these lists highlight potentially unrelated proteins from which it is difficult to
infer a meaning. In transcriptomics, following Rapaport et al.’s 2007 statement [45] that
“a small but coherent difference in the expression of all the genes in a pathway should
be more significant than a larger difference occurring in unrelated genes”, the focus has
shifted to analyzing the activity of genes in the light of our knowledge of their molecular
interactions, i.e., researchers seek to identify dense parts of an interaction network that
contain genes that are significantly dysregulated. Those parts of an interaction network that
are both dense and active are called “modules” or “active modules”. In the present study,
we took a similar approach by identifying the most differentially phosphorylated protein
modules on a protein–protein interaction network. These modules of interacting proteins
differentially phosphorylated at each time point were identified using AMINE (Active
Module Identification through Network Embedding—[46]) and listed in Tables S8–S13.
Depending on the time elapsed since the exposure to EGF, the number of modules varied
from three at 1 min to a maximum of 18 at 15 min and decrease to two at 30 min. The
structure of the modules was similar to a large one composed of several proteins ranging
from 17 to 118 and other smaller ones. In this study, we focused on the first module. The
enrichments of this module with annotations from Gene Ontology (Biological Process),
KEGG, Reactome, and WikiPathway for the different time points are shown in Table S14.
Module 1 contains, for all the time points, the three proteins EGFR, SHC1, and MAPK1.
Overall, there was a large overlap of proteins belonging to module 1 at all the time points.
The evolution of the phosphorylation of the proteins included in the prominent module 1
representing protein interaction for each time point is shown in Figure 11. The proteins in
red and those in brown were differentially phosphorylated compared to the control. The
proteins in red represent those that were differentially phosphorylated at this time point
compared to the previous time point (or newly phosphorylated proteins). The proteins in
brown are those that were differentially phosphorylated but were already differentially
phosphorylated at the previous time point. Finally, the proteins with a white background
are those that were no longer differentially phosphorylated at this time point but were
differentially phosphorylated at the previous time point (or back to normal). This analysis
highlights the dynamic protein networking upon external stimulation. A dynamic and
variable landscape of networks linked to stimulus-specific phospho-proteome can be
considered as the rewiring of a signaling network.
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Figure 11. An interaction graph between the proteins included in the most striking module identified
by AMINE for each of the time points after EGF exposure. The proteins in red and those in brown
are those that were differentially phosphorylated compared to the control. The proteins in red
represent those that were differentially phosphorylated at this time point compared to the previous
time point (newly phosphorylated proteins). The proteins in brown are those that were differentially
phosphorylated but were already differentially phosphorylated at the previous time point. Finally,
the proteins with a white background are those that were no longer differentially phosphorylated at
this time point but were at the previous time point (or back to normal).

3. Discussion

Phosphorylation constitutes a major post-translational modification ubiquitous in
prokaryotic and eukaryotic cells, inducing transformation in protein steric configuration
and activation and inhibition of various enzymatic activity and promoting and impeding
protein–protein interactions. Consequently, phosphorylation orchestrates many biological
processes, acting as a signal transduction triggered by extracellular factors. As expected,
aberrant phosphorylation has been described in numerous reports as the cause of a large
number of diseases, such as cancer and dysfunctional developmental programs across
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species [47]. Alzheimer disease in humans has been particularly scrutinized [48–50], along
with other neuronal afflictions [51]. The immense effort to build a comprehensive inventory
of the phospho-proteome across species in order to document the phosphorylation across
all the spectrum of eukaryotic and prokaryotic living organisms has been undertaken in
the past two decades [52–56]. The comparative catalog of this inventory amenable to the
full genome scale of protein byproducts in key species could deepen our comprehension of
this important biological mechanism that has been selected in evolution for five hundred
millions years. Published advances have facilitated our evolutionary analysis, including
searching highly conserved mechanisms that might have spread over living organisms and
the singular derived events within each species [57].

Regarding the prokaryotes, or the most primitive organisms, only a few hundred
proteins per organism have been reported to be phosphorylated, whereas for the eukaryotic
species, the detection of thousands of phosphorylated proteins have been comparatively
found. Bacteria have been intensively studied due to the simplicity of cells amenable to
experimental procedures [58–60]. In this report, an evolutionary analysis was conducted to
investigate whether a core of phosphoproteins is preferentially conserved in all species from
lower to higher evolution hierarchy. We aimed to document whether protein orthologs
across living organisms might share a hidden prominent mark like a signature that would
be conserved in phosphorylated sites. However, when the phosphoproteome of yeast
and Caenorhabditis elegans are compared, the results suggest that phosphorylation evolved
separately after the divergence of higher eukaryotes from yeast, which is corroborated by
the apparition of a large number of species-specific kinases after the split [61]. Interestingly,
mitochondria have a bacterial origin in accordance with the symbiotic paradigm and are
found in pro and eukaryotic cells. Their phosphorylation status shows unambiguous,
limited conservation, which seem to indicate that phosphorylation is a more recent process
evolving separately inside each taxa and orders. Moreover, the quantification of phospho-
sites in mitochondria in diverse species shows a drastic elevation in mammals compared to
that of yeast [61].

An analysis of phosphoproteome between non-heterolog and heterolog proteins in
humans was informative—no clear-cut status can dissociate the two groups, although
the non-ortholog proteins constitute a very small component versus the total. Within the
eukaryotic reign, identified phosphoproteins are no more orthologs than non-orthologs
depending on the species.

Interestingly, in flies and worms, which have roughly the same phylogenetic distance
to mammals, the same low level of phosphorylation associated with overlapping GO
enrichment was observed. This pattern of GO annotation obtained in a comparative
analysis between humans on one side and worms and flies on the other side is drastically
different, suggestinglittle conservation of the phosphorylation and its biological implication
across evolution.

Together, comparative large scale phosphorylation datasets in yeast, flies, mice, and
humans suggests striking differences in structural features. The intensity of phosphory-
lation is correlated with increases in the size of interacting networks in humans, whereas
this trend is unclear or perhaps non-existent in lower species like flies. This discrepancy be-
tween the conservation of alignments in protein sequences and the evolutionary divergence
in the phosphorylation process indicates that each species has manipulated the regulatory
processes of phosphate addition in a very specific manner. In accordance with this finding,
the size of the worm kinome is two times larger than of that of the fly kinome, with a high
level of divergence between them as half of worm kinone are specific to this species [61–63].
The fact that 90% of human proteins are phosphorylated highlights the evolutionary success
of primates in creating large, connected protein networks whose transient association and
dissociation is obviously guided by phosphorylation [64]. Primates have invented robust
phosphorylation processes to integrate multiple connected partners, which is not seen
in other species, such as flies, zebra fish, and worms. However, in E. coli, for example,
around 100 of its 4000 (3%) proteins are known to be phosphorylated, versus more than
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half of all proteins in eukaryotic cells [61]. Site-specific phosphorylation co-evolved with
the adaptation of the species according to their evolutionary history. This suggests that reg-
ulation via phosphorylation occurred late in prokaryotic evolution from the split between
yeast and higher eukaryotes. This might explain why eucharyotic species far remote in the
phylogenetic tree share some common features regarding the kinone [61,65–68].

Based on one example of biological stimulus acting on a simple cultured cell, we
present a comprehensive time course of protein networks triggered by time dependent
changes of phospho-sites. After stimulation, the networks arranged by phosphate addition
extend in a wave like manner and then retract to the basal level.

It is generally accepted that amino acid changes in protein sequences have evolved
at a constant rate in history within each species. Phylogenetic analysis based on genome
sequencing and RNA-sequencing determination have shown that the switch between
acidic and phosphorylatable residues took place for some proteins in the evolutionary tree
between eukaryotes and prokaryotes. Thus, the acidic residues (Asp or Glu) might have
been replaced by serine or threonine—in such a case, the salt bridge can be restored via
the addition of a phosphate group. In this scenario, the proteins authorizing chemical
modification due to the phosphate addition are multi-phasic, allowing fine regulation [8].
In this report, we tried to address when an ordered apparition of kinases took place in the
evolutionary timing of living organisms, and some major events of phosphorylation could
explain the primate status [67,68].

4. Conclusions

In this report, we did not focus our study on known substrate motifs as signaling mod-
ules across species for major kinases. We assumed that in the evolutionary processes, some
motifs can appear with modified kinases, diminishing the pertinence of identical motifs
searching in full scale phosphoproteome. Instead, we preferred the strategy of determining
the global phosphorylation in proteins and its incidence to guide molecular networks.

Few, if any, comparative quantifications of overall phosphorylation and its evolu-
tionary conservation across species have been undertaken. Using bioinformatics tools on
genome wide scale eukaryotic phosphoproteomes, including humans, flies, worms, and
yeast, we present the most comprehensive evolutionary landscape of eukaryotic phos-
phoproteomes thus far. We scrutinize the phosphoproteomes in these different models
of generic models for which extensive full scale genome datasets are available. Most re-
ports describe the phosphorylation in individual proteins along with their few regulatory
partners and their comparison between species. These studies are usually also establish
the degree of evolutionary conservation. Our approach documents a new paradigm: the
role of the integrated P-sites landscape, including phosphorylation noise without known
biological function, in the shape and assembly of proteins networks. Taking into account
the massive P-sites without any known function (only 3% to 5% of P-sites have been found
with a regulatory function), we explored the relationship between the full spectrum of
phosphorylation and the meta organization of protein matrixes. A panel of computational
tests addressed the role of full spectrum P-sites, including: (i) in relation to the dynamics of
protein networking upon stimulation; (ii) in relation to the conserved networking between
species; and (iii) in relation to the landscape of intertwined P-sites by different kinases into
the networks. More importantly, our datasets highlight that P-sites numbers in proteins,
including mostly “noisy” phosphorylation, increase drastically with the size of networks in
which these proteins are component. These datasets might unmask a prominent role of the
“P-site noise”, which is attributed to P-sites without a known function that constitute more
than 95% of the total, regarding shaping proteins matrixes.

We might conclude that phosphorylation orchestrates protein networks in humans.
Amazingly, this observation appears to be more chaotic in lower species. The functional role
of many phospho-sites remains unknown and poorly documented despite a considerable
inventory of phosphorylated proteins with sequences information of modified residues
across many species, ranging from lower to higher organisms. In the massive background
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and noise of phosphate addition, only a few highly conserved phosphorylation hotspot
regions have been documented with functional importance [69]. If 90% of human proteins
are found phosphorylated, only 5% have a reported regulatory function situated mostly in
the catalytic domain or the protein–protein interaction domain [67–69].

Overall, all these imbricated studies highlight that the kinome and phospho landscapes
evolve separately in each species, with a mixed of conserved processes between them
and innovative new kinases and P-sites specific to each one. Our overall analysis at
full proteome level demonstrates clearly that the paradigm of the great proportion of
phosphate addition without any known function and considered metabolic noise should
be re-evaluated. Phosphate addition, besides the known regulation of biochemical function
regarding few individual proteins, likely intervenes with the orchestrating network of
interacting proteins upon stimulation through what is unanimously viewed as its noise
component. Moreover, stable or long-lasting P-sites without any attributed function might
be a chemical key to assemble proteins in networks.

5. Materials and Methods
5.1. Data Gathering

Phosphorylation data for seven model organisms (Homo sapiens, Mus musculus, Danio
rerio, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, and Arabidopsis
thaliana) were downloaded from the EPSD database (http://epsd.biocuckoo.cn/, accessed
on 8 March 2022). The reference lists of proteins for the same seven organisms was
retrieved from the Uniprot database (https://www.uniprot.org/, accessed on 6 March
2022). Homology data between the proteins of these organisms were downloaded from the
Homologene database (https://ftp.ncbi.nih.gov/pub/HomoloGene/current/homologene.
data, accessed on 5 March 2022). An updated Excel table of the catalog of kinase proteins
built by Manning et al. [70] was downloaded on March 18, 2022 from http://kinase.
com/human/kinome/tables/Kincat_Hsap.08.02.xls, accessed on 8 March 2022. Data
concerning the dynamics of phosphorylation were downloaded from the Qphos database
(http://qphos.cancerbio.info, accessed on 20 May 2022—[71]).

5.2. Computing Correlation between the Distribution of the Number of Phosphorylation Sites Per
Protein in Different Species

HomoloGene is a system that automatically detects homologs, including paralogs and
orthologs, among the genes of 21 completely sequenced genomes. Homologene database
attributes a HID (HomoloGene group ID) to proteins from different species that represents
a grouping of homologous genes among species. This data has been combined with the
number of phosphorylation sites per proteins given by EPSD. For each pair of analyzed
species, we calculated a Spearman rank correlation, which gave a value in the range
[−1, +1] where a value of +1 meant a perfect positive association between ranks, a value
of 0 meant no association between ranks, and a value of −1 meant a perfect negative
association between ranks. Data about the phylogenetic tree of the seven selected species
were from Hedges (2002) [72].

5.3. Correlation between Phosphorylation and Protein Interactions

For humans, we divided the 19,645 proteins in our dataset into deciles according
to the number of phosphorylation sites. There were 2368 proteins with zero, one, or
two phosphorylation sites in the first decile, 2130 proteins with between three and five
phosphorylation sites in the second decile, etc. (see Table 2). For S. cerevisiae, we divided
the data into quintiles (Table 4). D. melanogaster contained a large proportion of proteins
without a phosphorylation site (more than 60% of the total) which made it impossible to
divide it into bins of equal size. For this organism, we considered the non-phosphorylated
proteins as a category and sub-divided the rest into quartiles (Table 3). The interactions
between proteins in the same bin were retrieved from the String database and used a
confidence score greater than 0.7. Calculations of the number of interactions, the average
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number of interactions of each protein, the number of connected components, and the
percentage of proteins having no interaction were done with Cytoscape [73].

5.4. Enrichment Analysis

Functional enrichments for Gene Ontology Biological Process terms, KEGG, WikiPath-
ways, and Reactome Pathways were retrieved using Cytoscape [73] and the StringApp
plugin [74]. Only terms associated with a False Discovery Rate (FDR) of less than 0.05
were retained.

5.5. Study of Phorphorylated Proteins According to the Kinase group

The site http://kinase.com/wiki/index.php/Kinase_classification (accessed on 18
March 2022) was used to perform the survey. Euler diagrams shown in Figures 8 and 9
were generated using the online tool nVenn available at http://degradome.uniovi.es/cgi-
bin/nVenn/nvenn.cgi (accessed on 20 April 2022) [75].

5.6. Dynamic Analysis

In the qPhos database, we selected data relative to the variation of phosphorylation
following EGF exposure to Hela cells measured using SILAC (stable isotope labelling by
amino acids in cell culture) at six time-points: after 1 min, 5 min, 10 min, 15 min, 20 min,
and 30 min. The dataset contained the variation of phosphorylation at each time-point
compared to the control for multiple phosphorylation sites. For the same protein, increases
of phosphorylation were observed on some sites, while some other sites showed a decrease.
In order to obtain a unique value reflecting its change in phosphorylation for each protein,
we counted the number of sites where the variation in phosphorylation exceed a factor
of two (a Log2 FoldChange EGF vs. control ≤ −1 or ≥ 1). Our count of the number of
phosphorylation variation by protein for every time point is specified in Table S7. Modules
of interacting proteins differentially phosphorylated at each time point were identified with
AMINE (Active Module Identification through Network Embedding—[46]). The method
was adapted to use the number of phosphorylation variation per protein computed above
instead of a p-value generated by a differential analysis pipeline. The String database [52]
was used to retrieve protein interaction data with a combined evidence score greater than
0.7. Measures of protein activity were represented by phosphorylation change counts.
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