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Review Article 

Computational prediction of miRNA/mRNA duplexomes at the whole 
human genome scale reveals functional subnetworks of interacting genes 
with embedded miRNA annealing motifs 
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A B S T R A C T   

Perfect annealing between microRNAs (miRNAs) and messenger RNAs (mRNAs) was computationally searched 
at a broad scale in the human genome to determine whether theoretical pairing is restrictively represented in 
functional subnetworks or is randomly distributed. Massive RNA interference (RNAi) pairing motifs in genes 
constitute a remarkable subnetwork that displays highly genetically and biochemically interconnected genes. 
These analyses show unexpected repertoires of genes defined by their congruence in comatching with miRNAs at 
numerous sites and by their interconnection based on protein/protein interactions or proteins regulating the 
activity of others. This offers insights into the putatively coregulated homeostasis of large networks of genes by 
RNAi, whereas other networks seem to be independent of this regulatory mode. Genes accordingly defined by 
theoretical RNAi pairing cluster mainly in subnetworks related to cellular, metabolic and developmental pro-
cesses and their regulation. Indeed, genes harboring numerous potential sites of hybridization with miRNAs are 
highly enriched with GO terms depicting the abovementioned processes and are grouped in a subnetwork of 
genes that are significantly more highly connected than they would be according to a random distribution. The 
significant number of interacting genes that present numerous potential comatches with miRNAs suggests that 
they may be under the control of the integrative and concerted action of multiple miRNAs.   

1. Introduction 

miRNAs usually act in the regulation of mRNAs by pairing with 
complementary sequences; most of their targeting takes place in the 3′- 
untranslated region (3′ UTR) of mRNAs, which initiates degradation via 
the Dicer/Ago machinery and/or prevents translation via interference 
with the mRNA reading process [Bartel, 2004 and 2009; He and Han-
non, 2004]. Authors have proposed that 60 % of human protein-coding 
genes may theoretically have maintained pairing with miRNAs, and 
many of the genes within this catalog have been found to be experi-
mentally controlled by miRNAs [Friedman et al., 2009; Lewis et al.;, 
2005]. This suggests that miRNAs intervene in most signaling pathways 
and molecular processes in a cell. On the side of biogenesis, the 
pre-miRNA precursor molecules are transferred to the cytoplasm by the 
Exportin 5/RAN-GTP transport system and are then processed by the 
endonuclease Dicer, which releases mature miRNA duplexes. One strand 
of the miRNA duplex, loaded into the Argonaute protein (AGO) within 

the silencing complex (miRISC), is used to select the matching mRNAs 
for degradation [Snead and Rossi, 2012; Snead et al., 2013; Sun et al., 
2008]. Approximately 2000 miRNA genes have been identified in the 
human genome [Kozomara and Griffiths-Jones, 2014]. The observations 
that a particular miRNA can hypothetically target hundreds or thou-
sands of different mRNAs and that an individual mRNA can inversely be 
targeted by hundreds of miRNAs [Agarwal et al., 2015] shed light on the 
role of miRNAs in shaping very large gene regulatory networks. 

Approximately 40 % of human miRNAs are located in clusters within 
the genome, and the others seem to be randomly distributed [Kozomara 
and Griffiths-Jones, 2014; Agarwal et al., 2015; Tan et al., 2019]. On the 
other hand, a total of 591 miRNAs have been calculated to be located 
within genes, referred to as “host” genes; as consequence, some intra-
genic miRNAs are positively correlated with their host genes in terms of 
their levels of expression [Tan et al., 2019]. Although the effective 
regulation of mRNAs can be demonstrated and assessed by the existence 
of pairing with miRNAs, their overall regulation of large networks likely 
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involves many secondary and downstream events, such as gene-gene 
interactions, which complicates the analysis of the real contribution of 
miRNAs in the global landscape of gene network equilibrium [Tan et al., 
2019; Gennarino et al., 2009; He et al., 2012; Franca et al., 2016]. When 
miRNAs are inserted in a host gene, their coexpression is usually guided 
by a unique promoter. The landscape appears even more complicated 
than previously thought because of the discovery that intronic miRNAs 
may have their own independent intronic promoter, which suggests a 
double mode of expression regulation [Monteys et al., 2010; Ozsolak 
et al., 2008]. Moreover, in most cases, miRNAs have been reported to 
stimulate the expression of genes by binding directly to the promoter 
region and interfering with transcriptional regulatory regions [Place 
et al., 2008; Majid et al., 2010; Huang et al., 2012]. Although down-
regulation by RNAi is the major effect that has been observed and 
quantified, positive correlations exist between the level of miRNAs and 
target genes in some cases as an indirect consequence of the down-
regulation of an upstream suppressor [Tan et al., 2019]. Some individual 
miRNAs play a regulatory role for a large number of genes; for instance, 
miR-150 takes part in the regulation of approximately 1000 genes, and 
miR-150-dependent genes are nearly evenly distributed across the 
whole genome [Tan et al., 2019]. 

In this study, we focused on one major function of miRNAs: pairing 
with mRNAs as a trigger for Dicer/Ago degradation. We explored the 
broad-scale genome distribution of miRNA targets, addressing the 
questions of how many genes are targeted by a unique miRNA and how 
many genes are targeted by multiple miRNAs. In this report, a series of 
computational analyses demonstrate the existence of a discriminative 
distribution of genes presenting motifs for miRNA annealing and hot 
spots of miRNA/mRNA matches within subcategories of genes. Our 
analysis also revealed that the genes with multiple miRNA-annealing 
motifs present large discrepancies among GO categories related to bio-
logical processes pertaining to development, neurogenesis and differ-
entiation. Furthermore, we identified a cohort of hundreds of genes that 
cluster within a very large network of interacting genes that share motifs 
for potential co-miRNA targeting. In parallel, we show that a very large 
gene network is fully independent of any miRNA action, which supports 
the paradigm of “layers” of genes that are selected and built through 
evolution over hundreds of millions of years, with their own network 
regulatory modes. 

2. Methods 

2.1. Computational programs used in this study 

Reliable identification of miRNA targets is still a major challenge. 
Reporter assays and Western blotting are the most reliable methods for 
demonstrating direct interactions between an miRNA and its target but 
can still generate false positives [Kuhn et al., 2008]. In addition, the 
interactions that are supported by strong experimental evidence are 
limited. MiRTarBase database release 7.0 from September 15, 2017 
[Chou et al., 2018], which includes all experimentally verified in-
teractions, comprises the interactions between 735 miRNAs and 2766 
targets obtained by reporter assays or Western blotting for Homo sapiens. 
This is far to small a scope for our purposes since, according to these 
data, the majority of genes are not considered to be targeted by miRNAs. 
To overcome this limitation, we use computationally predicted in-
teractions, which is a strategy that has been employed by many other 
researchers. We base our study on the data provided by miRDB v6 [Chen 
and Wang, 2020], in which the results of a target prediction algorithm 
(MirTarget [Liu and Wang, 2019]) are improved with RNA-seq data. 
Each predicted interaction is associated with a probability score in the 
range of 0–100, which reflects the statistical confidence of the predic-
tion. MiRDB includes all results with a score ≥ 50, but the authors advise 
caution if the score is less than 60. They indicate that a prediction score 
greater than 80 is most likely to be real, and this is the threshold that we 
use. 

2.2. Collection of miRNA-target interactions 

The content of miRDB database v6 was downloaded using the link 
provided on the miRDB website (http://mirdb.org/downl 
oad/miRDB_v6.0_prediction_result.txt.gz). The data are presented in a 
single file that lists for each miRNA its predicted targets and the asso-
ciated score. For Homo sapiens, miRDB records more than 15 million 
interactions between 2656 miRNAs and 17,464 targets. After removing 
the predictions associated with a score below 80, 825,626 associations 
between 2638 miRNAs and 16,732 targets remained for Homo sapiens. 
As targets are identified by their NCBI gene IDs, we used the following 
file downloaded from the NCBI website to map the NCBI identifiers to 
gene symbols: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz. 
This file also allowed us to obtain a list of all the genes indexed by NCBI 
(which number 20,227); thus, by differentiating between this list and 
the list of genes referenced in miRDB, we identified 3,495 genes pre-
dicted to not be targeted by miRNAs. 

2.3. Analysis of the distribution of miRNA target associations 

With a Python script that we developed, we counted the predicted 
number of miRNAs that target each gene. This allowed us to draw the 
plot presented in Fig. 1 and to note that the shape of the distribution is 
typical of a power law function. We performed the same processing steps 
to determine the number of predicted targets for each miRNA (data are 
presented in Supplemental Table S2) and to draw the plot shown in 
Fig. 2. To study possible correlations between the susceptibility of genes 
to be controlled by miRNAs and their functions, we categorized the 
genes according to their degree of targeting by miRNAs. The 3495 genes 
that were not targeted by any miRNA constituted the first category. To 
avoid a population size bias, we defined the other categories such that 
each category contained a similar number of genes, i.e. a number of 
genes as close as possible to 3495. Thus, the second category was rep-
resented by genes that were very weakly targeted by miRNAs (i.e., tar-
geted by between 1 and 5 miRNAs), which represents 3722 genes 
(Fig. 1a). The third category, illustrated in Fig. 1b, groups together 3303 
weakly targeted genes (i.e., targeted by between 6 and 11 miRNAs). The 
fourth category consisted of 3409 genes targeted by between 12 and 21 
miRNAs, which we refer to as moderately targeted genes (Fig. 1c). 
Continuing on this principle, we then identified 3211 highly targeted 
genes (i.e., targeted between 22 and 41 miRNAs) and the 3087 very 
highly targeted genes (i.e., targeted by more than 41 miRNAs), as 
illustrated in Fig. 1d and Fig. 1e. The details of the different categories of 
genes are given in Supplemental Table S1. 

2.4. Gene ontology enrichment 

GO enrichment analysis was performed for each category of genes 
using the enrichment analysis tool available at http://geneontology. 
org/. The enrichments obtained for each category were combined 
using a Python script to generate a table summarizing the results ob-
tained for each GO term (Supplemental Table S3). The data for 15 terms 
considered to be the most representative are graphically depicted in 
Fig. 3. 

2.5. PPI enrichment 

To determine whether each of the categories includes genes that 
exhibit more interactions with each other than could be due solely to 
chance, using the data from the String database [Franceschini et al., 
2012], we determined the number of corresponding proteins for each 
category and the number of interactions between the proteins in the 
same category associated with a high confidence score (minimum 
required interaction score ≥ 0.700). We performed the same procedure 
for 1000 randomly picked sets of genes of similar size and averaged the 
number of interactions found (Supplemental Table S4). The average 
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degree of the networks constructed from the genes in each category was 
significantly higher than that of random networks of the same size. To 
determine if this difference is sufficient to be considered representative, 
we computed the PPI enrichment p-value for the six categories as 
described by Franceschini et al. [Franceschini et al., 2012]. The obtained 
p-values were very low, well below 10E-16, meaning that the genes in 
each category show more interactions among themselves than would be 
expected for a random set of genes of similar size. It can also be seen that 
the average degree correlates with the number of miRNAs that target 
genes in each category. This number ranges from 5.82 for highly tar-
geted genes to 3.65 for nontargeted genes. However, although the 

“nontargeted genes” network is less dense, it still presents more con-
nections than a random network, and it is apparent from the visualiza-
tion of this network using interaction data from the String database with 
a high confidence (minimum required interaction score ≥ 0.700) that 
there are modules of genes that seem to present a definite arrangement 
(Supplemental Figure S1). 

2.6. Analysis of cotargeted genes 

Among the genes that were most frequently targeted by miRNAs, 
some were targeted by the same set of microRNAs. To visualize these 

Fig. 1. Distribution of genes according to the number of miRNAs that target them. a) Magnified view of the genes very weakly targeted by miRNAs (i.e., targeted by 
between 1 and 5 miRNAs). b) Genes weakly targeted by miRNAs (i.e., targeted by between 6 and 11 miRNAs). c) Genes moderately targeted by miRNAs (i.e., targeted 
by between 12 and 21 miRNAs). d) Highly targeted genes (i.e., targeted by between 22 and 41 miRNAs) e) Very highly targeted genes (i.e., targeted by more than 
41 miRNAs). 

Fig. 2. Distribution of the number of genes targeted by miRNAs.  
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cotargeted genes, we built a network in which each node was a gene and 
a link existed between two genes if they were targeted by more than 50 
shared miRNAs (Fig. 4a). From the genes in this network, we reproduced 
the known protein-protein interaction network using the interactions 
described in the String database [Franceschini et al., 2012] associated 
with a high confidence score (minimum required interaction score ≥
0.700) (Fig. 4b). The interaction enrichment p-value was lower than 
10E-16. This means that the proteins encoded by the genes cotargeted by 

more than 50 miRNAs exhibit more interactions among themselves (687 
edges in the network) than what would be expected for a random set of 
proteins drawn from the genome (368 edges). 

3. Results 

The analysis of the computationally predicted miRNA-target in-
teractions throughout the human genome was conducted to determine 

Fig. 3. Illustration of the differences in GO enrichment with biological process annotations obtained for the different categories of genes. Each table row represents a 
different GO term, and each column represents a different category of genes. The numbers in the cells are the log10 p-values with FDR correction of the enrichment of 
a category of genes with a specific GO term. Cells with a red background represent overrepresented annotations, while cells with a blue background represent 
underrepresented annotations. Black cells represent categories with no significant enrichment. 

Fig. 4. a) Network of cotargeted genes. In this network, each node is a gene, and a link exists between two genes if they are targeted by more than 50 shared miRNAs. 
b) PPI network for the same set of genes as in panel a, built using the interactions described in the String database associated with high confidence (minimum 
required interaction score ≥ 0.700). 
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the distribution of these pairings. The results are summarized in Fig. 1 
and Supplemental Table S1. While roughly one-sixth of the genes were 
not targeted by miRNAs, a number of genes were targeted by hundreds 
of miRNAs (approximately 450 genes showed potential pairing with 
more than one hundred miRNAs). In parallel, we determined the reverse 
distribution, i.e., the number of miRNAs per gene (Fig. 2 and Supple-
mental Table S2). As shown in Fig. 1, a power law distribution was 
observed, indicating that few genes were hypothetically targeted by a 
large number of miRNAs with different combinatorial assortments for 
each gene in this category. In this study, we evaluated the correlation 
between the number of matching sequences with miRNAs within genes 
and the functions of these genes. To this end, we partitioned the genes 
into six categories of roughly equal size that included potentially very 
highly targeted, highly targeted, moderately targeted, weakly targeted, 
very weakly targeted and nontargeted genes (see the methods section for 
details about the composition of each group). We performed a 
comprehensive GO enrichment analysis of these different categories of 
genes by distinguishing the biological functions that appeared more 
frequently than expected by chance and those that were underrepre-
sented (Supplemental Table S3). Considering the functions that were 
related to these 6 subdivisions of miRNA target gene populations, some 
striking differences were observed. The two extreme subgroups of genes 
(the genes with the most motifs for miRNA annealing and nontargeted 
genes) presented an inverse distribution of GO terms, showing over-
representation in one case and underrepresentation in in the other 
(Fig. 3, Supplemental Table S3). The genes that were potentially highly 
targeted by miRNAs were positively enriched in functions related to 
development, neurogenesis and differentiation. Genes related to ner-
vous system development (GO:0007399), developmental processes 
(GO:0032502), system development (G0:0048731), cell differentiation 
(GO:0030154), and the regulation of gene expression (GO:0010468) 
were very overrepresented among the genes that were very highly 
theoretically targeted by miRNAs. For instance, the probability (with 
false discovery rate - FDR correction) of obtaining the same number of 
genes related to nervous system development (GO:0007399) by chance 
is below 10E-54. Genes annotated with the same GO terms were over-
represented in the second category (highly targeted genes), with an FDR 
lower than 1E-10. The 3 central categories (moderately targeted, weakly 
targeted and very weakly targeted genes) contained a number of genes 
related to development, neurogenesis and differentiation, in line with 
their average occurrence throughout the genome. Conversely, the most 
overrepresented functions among the genes that did not match any 
miRNAs were related to sensory perception, particularly the sensory 
perception of smell, G protein-coupled receptors and synaptic processes 
(Fig. 3). Following the same pattern, these functions were expectedly 
underrepresented in the genes that were most targeted by miRNAs. 
Supplemental Table S3 lists all of the enriched terms identified per 
subgroup of miRNA annealing motifs with attributed FDR values. 
Overall, the most significant enrichment was observed for genes that 
were either potentially targeted by a large number of miRNAs or were 
not targeted at all. Genes that were moderately to very weakly targeted 
by miRNA showed a distribution that was relatively in line with a 
normal distribution of genes in the genome. However, this does not 
mean that these genes are randomly distributed. The evaluation of the 
interactions between the genes of each category showed that the ob-
tained networks were significantly more connected than would be the 
case for randomly selected groups of genes of the same size (Supple-
mental Table S4). The genes that were potentially the most targeted by 
miRNAs exhibited the most interactions with other genes in the same 
category (genes belonging to the category of ‘highly targeted genes’, 
showing 5.82 interactors on average). This number decreased as the 
potential targeting of the genes by miRNAs decreased. However, the 
density of connections, even for nontargeted genes, was much greater 
than for a randomly picked set of genes (Supplemental Table S4). In 
addition, even in the network of the interactions of the nontargeted gene 
category, modules of genes that seemed to present a definite 

arrangement could be observed (Supplemental Figure S1). This suggests 
that functional classes of genes depend on a large number of miRNAs 
and recognition motifs within the genes that potentially control them. 
The density of miRNA/transcript annealing motifs was correlated with 
development, neurogenesis, and differentiation genes and was inversely 
correlated with chemical detection genes (Fig. 3). However, gene 
expression and biochemical interactions vary among developmental 
times and stimuli in tissues and cell types, suggesting the rewiring of 
regulatory networks. These limits of the whole-genome computational 
search approach not distinguishing between the expressed and nonex-
pressed candidate genes were overcome by the observation of strong 
discrepancies in the distribution of miRNA recognition motifs within the 
genes assembled in association with the GO terms. This suggests that the 
overall approach adequately assessed the role of miRNAs in the global 
organization of integrative networks. Future investigations that consider 
the variable integrative role of miRNAs across tissues and develop-
mental stages may offer a new perspective regarding how the corre-
sponding networks are coregulated at the broad-scale genome level. An 
issue that is more complicated to address is that we might still assume 
that each cell type has a history imprinted by differences in epigenetic 
wiring, in which miRNA/mRNA pairing plays a prominent role as a new 
class of driver that has been unexplored in the framework of our current 
knowledge. 

Furthermore, the actual paradigm of a large panel of genes that are 
coorganized and orchestrated within a network of interacting genes was 
expanded to include the miRNA component acting as an extra layer of 
coregulation. The pairing motifs within the network and with the full 
miRNA catalog allowed us to assess the miRNA contribution in some 
subnetworks and not in others. As an example, a gene network was 
constructed based on a minimum of 50 comatches with the same miR-
NAs between two genes. The network architecture was composed of a 
large number of nodes according to the selection term; i.e., two nodes 
linked by a vertex refer to two genes sharing at least 50 identical motifs 
theoretically annealing with different miRNAs (Fig. 4a). All of these 
comatching genes (two by two) constitute the bricks for subsequently 
building a gene network using interactions stored in the String database 
with high confidence. The graphical results are presented in Fig. 4b. The 
PPI enrichment p-value of this network is below 10E-16, meaning that 
these genes exhibit more interactions among themselves than would be 
expected for a random set of genes of similar size drawn from the 
genome. The two overlapping networks (the network of genes with 
miRNA motifs and the network of interacting genes taken from the 
former network) indicate that in this large group of genes, biochemical/ 
genetic interactions are likely orchestrated by a layer of miRNAs acting 
at the network level. The statistical enrichment of the density of theo-
retical miRNA pairing sites allowed us to assess the relative contribu-
tions of the miRNA machinery in the interactive networks. This finding 
argues in favor of a networking role as a whole that would remain 
ignored by restricting molecular analysis to individual genes. 

4. Discussion 

Most known miRNAs exhibit conserved sequences in closely related 
mammalian species such as humans and mice. Intriguingly, roughly one- 
third of C. elegans miRNAs have close homologs among human miRNAs. 
For instance, the let-7 family has four members in C. elegans and at least 
15 in humans but only one in Drosophila [Bartel, 2018]. miRNAs and 
associated proteins appear to be the most common type of complexes 
within cells. miRNAs are approximately 22 nucleotides (nt) long and 
inhibit protein synthesis by annealing with their seed region of 2–8 nt or 
with the 3′UTR of target mRNAs and may lead to the breakdown of 
mRNAs via the endoribonuclease activity of Ago after full perfect miR-
NA/mRNA annealing [Quevillon Huberdeau and Simard, 2019; Liu 
et al., 2004; Fabian and Sonenberg, 2012; Guo et al., 2010; Eichhorn 
et al., 2014]. Dicer is a key endoribonuclease enzyme that matures 
metazoan miRNA by cleaving double-stranded RNA from a precursor 
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molecule that presents a hairpin structure. The mature miRNA has a 5′

phosphate and a 2 nt 3′ overhang, characteristic of RNase III activity. 
The miRNA pathways of plants, fungi and animals appear to be bio-
chemically indistinguishable in terms of mRNA silencing pathways and 
inhibitory translation [Quevillon Huberdeau and Simard, 2019; Liu 
et al., 2004; Fabian and Sonenberg, 2012; Guo et al., 2010; Eichhorn 
et al., 2014]. miRNAs are subsequently incorporated into a ribonu-
cleoprotein complex known as the RNA-induced silencing complex 
(RISC), from which the “passenger” strand will be removed, leaving the 
“guide” mono-strand to mediate the downregulation of mRNA targets in 
situ. Argonaute proteins, which form the core of the RISC, are highly 
conserved 100-kDa proteins that contain a signature consisting of a PAZ 
domain (anchoring the single-stranded 3′ end of small RNAs) and PIWI 
domains (conferring mRNA-cleaving “Slicer’’ activity through 
RNA-RNA duplexes) [Quenvillon and Simard, 2019; Liu et al., 2004; 
Fabian and Sonenberg, 2012; Guo et al., 2010; Eichhorn et al., 2014; 
Weinmann et al., 2009]. All human Ago isoforms bind both miRNAs and 
small interfering RNAs (siRNAs), but only Ago2 has been shown to carry 
out mRNA cleavage [Bartel, 2018; Quevillon Huberdeau and Simard, 
2019]. Both siRNAs and miRNAs, when perfectly base-paired to target 
mRNAs, direct the cleavage of a single phosphodiester bond in the target 
mRNA via the “Slicer’’ activity of Ago in the RISC complex [Liu et al., 
2004; Fabian and Sonenberg, 2012; Guo et al., 2010; Eichhorn et al., 
2014]. The miRNA-guided gene repression system in bilaterian animals 
is associated with the TNRC6 protein, which interacts with PABPC. 
Then, the de novo-formed heterocomplex recruits either the PAN2– 
PAN3 deadenylase complex or the CCR4–NOT deadenylase complex to 
shorten the mRNA poly(A) tail and stop translation in both cases [Bartel, 
2018; Quevillon Huberdeau and Simard, 2019]. Other proteins have 
been reported to associate with RISC and modify Ago cleavage proper-
ties [Weinmann, 2009]. In parallel, upon miRNA binding to the 3′-UTR 
of an mRNA target, the asymmetric miRNA/mRNA duplex induces the 
inhibition of translation initiation without cleavage activity [Bartel, 
2018; Quevillon Huberdeau and Simard, 2019]. The miR/miR* duplexes 
observed in plants and animals are similar: they are ~22 nt long and 
show imperfect complementarity between the two strands and a 2 nt 
3′-overhang after Dicer cleavage [Moran et al., 2017]. The degree of 
complementarity between an miRNA and its mRNA target is a deter-
minant that predicts the mode of target repression. High complemen-
tarity promotes target cleavage by Ago, and restrictive seed matching (7 
to 8-base sequences at one extremity of an miRNA) leads to translational 
inhibition by pairing with the 3′ UTR of mRNAs, which is referred to as 
noncanonical pairing [Khorshid et al., 2013; Seok et al., 2016; Helwak 
et al., 2013; Djuranovic and Nahvi, 2012]. Conversely, many other 
mRNAs acting as “neutral targets” would escape downregulation by 
default in the absence of matching miRNAs. This strongly suggests that 
“anti-targets” avoid fortuitous pairing with the large number of miRNAs 
present in the cells where they are coexpressed via an evolutionary 
process. Under selective pressure over millions of years, complemen-
tarity that would dampen their expression has not arisen. Evolutionary 
selection appears to have successfully achieved the fine tuning of miRNA 
catalogs to maximize targeting specificity and avoid disastrous inter-
ference with other bystander genes [Bartel, 2009 and 2018; Quevillon 
Huberdeau and Simard, 2019]. Here, we expand a previous analysis to 
quantitatively evaluate the enrichment of miRNA/target gene networks 
on a genome-wide scale. Our approach integrates the sequence profiles 
of miRNAs (~2500 miRNAs) and their matching counterparts among 
RNAs to determine the degree of enrichment among different networks. 
Although recently developed high-throughput sequencing technologies 
have revealed that the catalog of miRNA and transcriptome expression 
profiles in tissues differ greatly [De Rie et al., 2017; Liao et al., 2010], we 
performed a systematic global computational search to assess the cate-
gorization of the identified networks. The purpose was to further deci-
pher the theoretical contribution of miRNAs to the coorganization and 
coregulation of networks, whereas some other networks seem to func-
tion without miRNA annealing, likely through evolutionarily selective 

processes. The analysis of GO term enrichment in miRNA motifs high-
lighted that neurogenesis, cell differentiation and morphogenesis, along 
with related metabolic processes, involve a strong component of miRNA 
pairing. Conversely, chemical detection organs, G protein-coupled re-
ceptors and synaptic process seem to not show an miRNA contribution. 
This overall discrepancy between GO annotation categories was rein-
forced by the construction of a network in which two genes linked by a 
vertex presented 50 comatching miRNAs. This network overlapped with 
the network of the same genes constructed on the basis of proven genetic 
or biochemical interactions. Overall, the data highlight an ancestral role 
of miRNAs in the organization large gene networks, whereas other large 
panels of genes appear to be insensitive and unrelated to miRNA 
interference. 

Our computational search led to highly discriminatory GO categories 
selected by miRNA/mRNA matching terms. A challenge in miRNA 
research revealed by the computational construction of networks will be 
to evaluate the specific component governed by miRNA interactions 
within interconnected gene networks within the temporal cascade; all of 
these integrated individual events orchestrate gene homeostasis within a 
network. Different algorithms have been developed for bioinformatic 
searches to predict miRNA target genes, limited by the fact that bio-
informatic methods may provide false-positive pairing candidates 
because these molecules might or might not be coexpressed in the same 
cell [Singh, 2017; Stanhope et al., 2009; Tarang and Weston, 2014]. One 
of the most sensitive computational scoring tools, developed by Weijun 
Liu and Xiaowei Wang in 2019, has allowed the systematic retrieval of a 
large catalog of candidates in several vertebrates (human, mouse, rat, 
dog and chicken) [Lim et al., 2003; Lee et al., 2003]. We relied on the 
results of this tool, stored in the mirDB database, to perform our analyses 
[Lee et al., 2003]. Noncanonical pairing might undermine powerful 
prediction tools, and additional experiments will be needed to validate 
the prediction results. 
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