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Abstract Frequent pattern mining is an important data mining task with a broad range of
applications. Initially focused on the discovery of frequent itemsets, studies were extended
to mine structural forms like sequences, trees or graphs. In this paper, we introduce a new
domain of patterns, attributed trees (atrees), and a method to extract these patterns in a forest
of atrees. Attributed trees are trees in which vertices are associated with itemsets. Mining this
type of patterns (called asubtrees), which combines tree mining and itemset mining, requires
the exploration of a huge search space. To make our approach scalable, we investigate the
mining of condensed representations. For attributed trees, the classical concept of closure
involves both itemset closure and structural closure. We present three algorithms for mining
all patterns, closed patterns w.r.t. itemsets (content) and/or structure in attributed trees. We
show that, for low support values, mining content-closed attributed trees is a good compromise
between non-redundancy of solutions and execution time.

Keywords Tree mining · Frequent pattern mining · Attributed tree ·
Condensed representation

1 Introduction

Frequent pattern mining plays an important and essential role in the field of data mining.
These patterns allow to describe the data with association rules, correlations or other inter-
esting relationships. In addition, they show their usefulness in classification tasks [13,15],
indexing [36], clustering [28] and other data mining tasks. Initially focused on the discovery
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of frequent itemsets [1], studies were extended to mine sequences [2] and structural forms
like trees [9] or graphs [34]. While itemset mining seeks frequent combinations of items
in a set of transactions, structural mining seeks frequent substructures. Most existing stud-
ies focus only on one kind of problem (itemset mining or structural mining). However, in
order to represent richer information, it seems natural to consider itemsets that are orga-
nized in complex structures. In this paper, we are interested in discovering complex patterns
in attributed trees that are tree structures in which each vertex is associated with an item-
set. We introduce a new kind of pattern that captures both structural trends and attribute
evolution. Combining structural enumeration with itemset enumeration is still an open
problem.

For example, an epidemic of dengue fever is characterized by a set of interacting factors,
causing the spread of the disease in space and time. In this situation, it is important to know
which factors have an effect on dengue epidemiology, and how. Even if the global influence
of environmental factors (water points, nearby mangrove, rainfall, humidity etc.) is known,
the impact of all the factors together with their interactions is still an open problem. Indeed,
the spread of a vector-borne disease in a city (e.g., the Dengue fever) can be represented
in an attributed structure in which vertices represent city districts at a given timestamp,
vertex attributes are characteristics of the districts and edges represent spatial or temporal
neighboring between vertices.

Another illustration of the use of attributed trees can be found in Weblog analysis. In
this kind of applications, it is common to represent user browsing in tree-like data where
each page is identified with a unique id [39]. However, one can more pertinently characterize
browsed pages with lists of keywords related to their content. This approach allows to capture
the browsing habits of users even when the web site is reshuffled.

Other applications can be imagined in various areas such as retweet tree mining, spatio-
temporal data mining, phylogenetic tree mining and XML document mining.

The key contributions of our work are the following:

1. We present the problem of mining ordered and unordered substructures in a collection
of attributed trees.

2. We define canonical forms for attributed trees.
3. We propose a method for attributed tree enumeration that is based on two operations:

itemset extension and tree extension.
4. We present an efficient algorithm IMIT for extracting frequent substructures in a set of

attributed trees.
5. We perform extensive experiments on several synthetic and real datasets.

The rest of this paper is organized as follows. Section 2 presents basic concepts and defines
the problem. Section 3 proposes a brief overview of related works, particularly a few studies
that mix itemset mining and structure mining. Section 4 describes our proposed method to
explore the search space, to compute frequency and to prune candidates. Section 5 reports
several applications of the algorithms to mine both synthetic and real datasets. Finally, Sect. 6
concludes the paper and presents possible extensions of the current work.

2 Basic concepts and problem statement

In this section, we give basic concepts and definitions and then, we introduce the problem of
attributed tree mining.

123



Frequent pattern mining in attributed trees: algorithms...

2.1 Preliminaries

Let I = {i1, i2, .., in} be a set of items. An itemset is a subset P of I (P ⊆ I). The
size of an itemset is the number of items. The items belonging to an itemset are sorted by
lexicographical order and are accessed by their index. The i th item of P is denoted by P[i].

A tree S = (V, E) is a directed, acyclic and connected graph where V is a set of vertices
(nodes) and E = {(u, v)|u, v ∈ V } is a set of edges. A distinguished node r ∈ V is considered
as the root, and for any other node x ∈ V , there is a unique path from r to x . If there is a path
from a vertex u to v in S = (V, E), then u is called an ancestor of v (v is called a descendant
of u). If (u, v) ∈ E (i.e., u is an immediate ancestor of v), then u is the parent of v (v is a
child of u). An ordered tree has a left-to-right ordering among the siblings. In this paper, we
consider that all trees are unordered unless otherwise specified.

An attributed tree, or (atree) is a triple T = (V, E, λ) where (V, E) is the underlying
tree and λ : V → pow(I) is a function which associates an itemset λ(v) ⊆ I to each vertex
v ∈ V . pow(I) denotes the power set of I. The size of an attributed tree is the number of
items associated with its vertices. A k-atree is an atree of size k.

Attributed trees can be seen as itemsets organized in a tree structure. As such, attributed
tree inclusion can be defined w.r.t. itemset inclusion and structural inclusion. For itemset
inclusion, we say that atree T1 is contained in atree T2 if both atrees have the same structure and
for each vertex of T1, the associated itemset is contained in the itemset of the corresponding
vertex in T2.

Definition 1 (Itemset/content inclusion) T1 = (V1, E1, λ1) is contained in T2 =
(V2, E2, λ2), and is denoted by T1 �I T2, if V1 = V2 and E1 = E2 and ∀x ∈ V1, λ1(x) ⊆
λ2(x).

Structural inclusion is represented by the classical concept of subtree [6,9,17,25,31,35,
37]. Thus, we generalize the notion of asubtree in the following way to include both content
and structural inclusion.

Definition 2 (Structural and content inclusion) T1 = (V1, E1, λ1) is an asubtree of an atree
T2 = (V2, E2, λ2) and is denoted T1 � T2 if T1 is an isomorphic asubtree of T2, i.e., there
exists a mapping ϕ: V1 → V2 such that (i) T1 �= T2, (ii) ∀(u, v) ∈ E1, ∃(ϕ(u), ϕ(v)) ∈ E2

and (iii) ∀x ∈ V1, λ1(x) ⊆ λ2(ϕ(x)).

If T1 is an asubtree of T2, we say that T2 is an asupertree of T1. The two kinds of inclusion
are illustrated in Fig. 1.

Three subtypes of inclusion relationships are usually studied in tree mining: induced,
embedded and embedded with gaps.

Fig. 1 Illustation of the different
types of inclusion
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Fig. 2 Example of an atree database with some common asubtrees

Definition 3 (Induced asubtrees) T1 is called an induced asubtree of T2 iff T1 is an iso-
morphic asubtree of T2 and ϕ preserves the parent–child relationships.

Definition 4 (Embedded asubtrees) T1 is called an embedded asubtree of T2 iff T1 is an
isomorphic asubtree of T2 and ϕ preserves the ancestor-descendant relationships.

Definition 5 (Gap-i asubtrees) T1 = (V1, E1, λ1) is called a gap-i asubtree of T2 =
(V2, E2, λ2) iff T1 is an isomorphic asubtree of T2 and ϕ preserves the ancestor-descendant
relationships with the following constraint: ∀(u, v) ∈ E1, d(ϕ(u), ϕ(v)) ≤ i +1 in T2, where
d(x, y) represents the number of edges between x and y in the atree.

A gap-0 asubtree is synonym to induced asubtree as it designates an asubtree where each
descendant is separated from its ancestor by a distance of 1, i.e., each descendant is a child.
A gap-free asubtree is equivalent to an embedded asubtree.

Figure 2 shows an example of an atree database (D) composed of three different atrees
with two (incomplete) sets of common asubtrees using maximum gaps of 0 and 1.

2.2 Problem statement

2.2.1 Frequent atree mining

Given a database B of atrees and an atree T , the per-tree frequency of T is defined as the
number of asupertrees of T in B. An atree is frequent if its per-tree support is greater than
or equal to a minimum threshold value. The problem consists in enumerating all frequent
patterns in a given forest of atrees.

2.2.2 Mining closed atrees

The problem with frequent atree mining is that the number of frequent patterns is often huge. In
real applications, generating all solutions can be very expensive or even impossible. Moreover,
many of those frequent atrees contain redundant information. In Fig. 2, for example, the atree
T 5 is present in all input atrees, but this pattern is already contained in the atree T 4. The
atree T 8 is also redundant w.r.t. T 7 since it is an asubtree of this pattern and it occurs in the
same input atrees.

Since the proposal of Mannila and Toivonen [21], huge efforts have been made to design
condensed representations that are able to summarize solutions in smaller sets. A set of closed

123



Frequent pattern mining in attributed trees: algorithms...

patterns is an example of such a condensed representation [27]. We say that an atree T is a
closed atree if none of its proper asupertrees has the same support as T .

However, mining frequent closed atrees could also be very expensive. We propose then
to relax the closure property on atrees and to mine only atrees which are closed w.r.t. their
content (i.e., itemsets associated with vertices). This condensed representation, called the set
of c-closed atrees (content closed), is a superset of the set of closed atrees (and a subset of
the set of atrees).

Definition 6 We say that an atree T is a c-closed atree if there is no pattern with the same
structure, the same support, and the same supersets in the corresponding vertices (“contained
in” relationship previously defined).

3 Related works

Most of the earlier frequent tree mining algorithms are derived from the well-known Apriori
strategy [1]: a succession of candidate generation and pruning (in which support computation
is done) steps. Two strategies are possible for candidate generation: extension and join. With
extension, a new candidate tree is generated by adding a node to a frequent tree [3,25]. With
join, a new candidate is created by combining two frequent trees [17,38]. Combination of
the two principles has also been studied [11].

The extension principle is a simple method suitable to mine induced trees because the
number of nodes that can be used to extend a given subtree is often lower than the number
of frequent subtrees.

Other tree mining algorithms are derived from the FP-growth approach [16]. These
algorithms adopt the divide-and-conquer pattern-growth principle, which avoids the costly
process of candidate generation. However, pattern-growth approach cannot be extended sim-
ply to tackle the frequent tree pattern mining problem. Existing implementations are limited
w.r.t. the type of trees they can handle: induced unordered trees with no duplicate labels in
each node’s children [35], ordered trees [33] or embedded ordered trees [40] are some kind
of trees that were successfully mined with pattern-growth approaches.

Finding condensed representations of frequent patterns is a natural extension of frequent
tree mining. For itemset mining, the notion of closure is a classical property [27]. Several
works have explored this topic in the context of tree mining and have proposed mining
methods as well as various implementations [12,31,32]. To the best of our knowledge, no
method has been proposed for the general case of attributed trees.

Recently, interest has grown in mining itemsets organized in structures. Several studies
[14,23,24] deal with attributed graphs. However, they focus on a specific problem dedicated
to the finding of dense subgraphs with vertices sharing similar features. In our work, we
are not concerned with the density of the subgraphs. We adhere to the domain of frequent
subgraph mining (FSM), as defined by [18], whose objective is to extract all the frequent
subgraphs in a given data set.

Closest to our work, Miyoshi et al. [22] study the mining of labeled graphs with quantitative
attributes associated with vertices. However, the kind of structure they are using allows to
solve the problem by combining a “classical” subgraph mining algorithm for the labeled
graph with an existing itemset mining algorithm for quantitative itemsets in each vertex.

We have developed recently several algorithms to mine induced and embedded attributed
trees [26]. The current paper describes in more details the method with some improvments
(such as, for example the processing of gap-i asubtrees) and present various applications of
the algorithm.
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4 Mining frequent atrees

We are mainly interested in identifying induced ordered and unordered asubtrees. Depending
on applications, some patterns including gaps in the ancestor–descendant relationship can
also be considered. However, in order to collect only interesting patterns, the gap used should
remain small. Otherwise, the relationship between a node and its descendants is not really
meaningful. Although we focus on induced asubtrees, we design a general method that can
mine asubtrees with any gap value, including embedded asubtrees. However, because of our
primary objective, our method works better for induced asubtree mining and performances
decrease as gap parameter increases.

4.1 Theoretical framework

4.1.1 String encoding for attributed trees

Choosing an appropriate pattern encoding has an important impact on the performance of the
mining process. Many algorithms represent trees with preorder strings [10,11,19,20,39] or
equivalent encodings like depth sequences [4,25]. In this paper, we extend the string encoding
defined by Zaki [38] for labeled trees to the case of attributed trees.

The string encoding for an atree T is generated by enumerating the nodes of T in a depth-
first preorder traversal and adding a special symbol $ when backtracking from a child to its
direct parent. The string representation of a node is generated by listing all the items present
in the associated itemset in lexicographical order. For example, the string representation of
atree T2 in Fig. 2 is “a c $ cde ab $ a.” In the paper, for simplicity, we omit the last backtracks
(i.e., $).

4.1.2 Canonical atrees

All tree mining algorithms dealing with unordered trees have to face the isomorphism prob-
lem. To avoid the redundant generation of equivalent solutions, one tree is chosen as the
canonical form and other alternative forms are discarded [3,11,25,35,38]. For labeled trees,
canonical forms are based on a lexicographical order on node labels. In our work, we define
a new order based on node associated itemsets.

Definition 7 Given two itemsets P and Q, we say that P ≤ Q iff:

1. ∀i ∈ [1, min(|P|, |Q|)]: P[i] ≤ Q[i], and
2. if ∀i ∈ [1, min(|P|, |Q|)]: P[i] = Q[i], then |P| ≥ |Q|.

From the definition above, an order among atrees can be defined recursively.

Definition 8 Let X and Y be two attributed trees, rx and ry denote the root nodes of X
and Y and let crx

1 , . . . , crx
m and c

ry
1 , . . . , c

ry
n denote the ordered list of subtrees of rx and ry ,

respectively. Then, X ≤ Y iff either:

1. λ(rx ) < λ(ry), or
2. λ(rx ) = λ(ry) and either:

(a) m > n and ∀i ∈ [1, n], crx
i = c

ry
i (i.e., Y is a prefix of X ), or

(b) ∃ j ∈ [1, min(m, n)], such that crx
j < c

ry
j and crx

i = c
ry
i for all i < j .
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Fig. 3 Canonical form of isomorphic attributed trees

With this order, the smallest attributed tree in a set of isomorphic atrees is choosen as the
canonical form [9].

Figure 3 shows examples of isomorphic trees. The second attributed tree is choosen as the
canonical form because its encoding, namely “a cde ab $ a $ $ c,” is the smallest one.

4.2 Atree enumeration

Rymon’s generic set-enumeration tree is often used to illustrate how itemsets are (completely)
enumerated by itemset mining algorithms [7,29]. An enumeration tree is generated in the
following way: The root node of the tree is at the top level and labeled with ∅ (i.e., empty atree).
Then, for each node, children (candidate atrees) are generated either by tree extension or
by itemset extension. Note that frequency computation is done during candidate generation
and thus does not require to access the input atree database (see Sect. 4.3).

4.2.1 Tree extension

For tree extension, we use a variation of the well-known rightmost path extension method
[3,25]. Let T be an atree of size k. T can be extended to generate new atrees in two different
ways. In the first way, a new child node N is added to the rightmost node of T (right-node
extension). In the second way, a new sibling N is added to a node in the rightmost path of T
(right-path extension) [8]. In both cases, N becomes the rightmost node of the generated
k + 1-atree.

In the existing approaches, the extension node N represents every valid node from the
input database. In our approach, a new extension node N can be created from every item
occurring in a valid node Q of the input database. In other words, given a valid node Q
from the input database, we can extend the atree T with every node of {Ni , i ∈ [1, |λ(Q)|] |
λ(Ni ) = λ(Q)[i]}.

4.2.2 Right-node extension

For right-node extension, we use a classical approach, which has been shown to be complete
as well as non-redundant [3,4].

Figure 4 shows an attributed tree with one of its embedded attributed subtree T . T is
represented in canonical form: “a b $ c ae.” From the candidate T , right-node extension is
used to generate new candidates by adding children to its rightmost node. Two nodes, in the
input tree, can be used to perform the extension: node “ab” and node “ f .” Using the method
described previously, node “ab” is used to extend T with nodes “a” and “b,” while node “ f ”
allows to extend T with node “ f .” Right-node extension leads to the generation of three new
candidates: “a b $ c ae a,” “a b $ c ae b” and “a b $ c ae f .” Figure 5 shows the attributed
trees obtained by performing a right-node extension on pattern T from Fig. 4.
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Fig. 4 Example of an attributed tree and one of its embedded attributed subtree T displayed in canonical
form. Framed elements highlight the position of T in the attributed tree on the left

Fig. 5 Attributed trees generated
by right-node extension of
pattern T from Fig. 4

Fig. 6 Attributed trees generated
by right-path extension of pattern
T from Fig. 4

4.2.3 Right-path extension

Right-path extension in ordered atree mining. For ordered tree mining, candidate nodes are
added in the order of appearance in the initial trees. This is a commonly used approach
(detailed in [3]) which is complete and non-redundant.

Right-path extension in unordered atree mining. The way to perform right-path extension in
unordered mining differs from previous approaches. Nodes that can be used for right path
extension of an unordered candidate atrees are those greater or equal than any of their siblings.
As candidate atrees subject to extension are in canonical form, the test has only to be done
against nodes in the right-hand path.

In Fig. 4, right-path extension is used to add new siblings after nodes belonging to the
right-hand path of T , namely node “ae” (by adding a new child to node c) and node “c”
(by adding a new child to node a). Nodes that can be used to generate siblings of node “ae”
are nodes “ac” and “g.” Node “g” is used to right path extend T with a new node “g” and
node “ac” allows to extend T with node “c” which is the only node that is greater than “ce”
w.r.t. the order previously defined (sect. 2). This operation generates two candidate atrees:
“a b $ c ae $ g” and “a b $ c ae $ c.” The only node that can be used to generate siblings
of node “c” is node “bcd .” Node “de” is not a valid candidate as it is an ancestor of node
“b” already present in the candidate atree. Node “bcd” is used to right path extend T with
nodes “c” and “d” (adding node “b” is not an option because b < c). This generates two new
attributed trees: “a b $ c ae $ $ c” and “a b $ c ae $ $ d .” Figure 6 illustrates the attributed
trees generated by performing right-path extensions on pattern T from Fig. 4.
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Fig. 7 Attributed trees generated by itemset extension of pattern T from Fig. 4

Fig. 8 Illustration of the generation of two isomorphic attributed trees by using different extension paths

This method can generate redundant patterns in the form of isomorphic attributed trees.
Duplicate candidates are detected and discarded before the candidate extension process by
performing a canonical check. Note that because of the way nodes are selected for tree
extension, candidates are mostly in canonical form. Using the node ordering instead of the
order of appearance of nodes does not alter the completeness of the atree enumeration process.

4.2.4 Itemset extension

Our itemset extension method is a variation of the method presented by Ayres et al. [5]. In
this variation, a new item I is added to the itemset associated with the rightmost node of the
candidate atree T . Items used for itemset extension are derived from the itemsets associated
with this node in the input database. The constraint is that the new item i must be greater
than any item associated with the rightmost node of T . After the extension, i (the last item
of the itemset associated with the righmost node of the generated k + 1-atree) becomes the
rightmost element of T .

For example, in Fig. 4, the items that can be used for itemset extension of T are “i ′′ and
“ j .” This operation generates two new candidates atrees: “a b $ c aei” and “a b $ c aej .”
Figure 7 shows the attributed trees obtained by performing itemset extensions on pattern T
from Fig. 4.

4.2.5 Filtering non-canonical patterns

In the case of unordered atree mining, the combination of right-path extension and itemset
extension may lead to the generation of redundant patterns. For example, two isomorphic
attributed trees for “a bc $ b” are generated either by adding item “c” to the rightmost node
of “a b $ b” or by adding node “b” as a sibbling of node “bc” in “a bc.” As explained before,
candidates that are not in canonical forms (in our example, “a b $ bc”) are discarded (see
Fig. 8).
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4.2.6 Completeness of atree enumeration

Proposition 1 If the set of candidates of size |T | is complete, then the set of candidates of
size |T | + 1 is also complete.

Proof Let T be the set of candidates obtained by extending a candidate atree T using right-
node extension, right-path extension or itemset extension. Every T ′ ∈ T , of size |T | + 1
differs from T only by its last element (w.r.t. the canonical form). T is the prefix of T ′. This
last element is either a node associated with an item added to the end of the candidate tree,
or an item added to the itemset associated with the rightmost node of the candidate tree. As
there is no other possibility to extend T , T represents the complete set of candidates of size
|T | + 1 having T as prefix. We can easily deduce that, from a complete set of candidates of
size |T |, it is possible, by applying all possible extensions, to generate a set of candidates of
size |T | + 1 which is also complete. �

Candidates at depth 1 of the enumeration tree (representing the search space) are atrees
of size 1, i.e., atrees with one node associated with an itemset of size 1 (i.e., an item). The set
of size-1 candidates is built by scanning the input database and collecting all items. This set
is complete and our previous proposition states that every set of candidates of size i is also
complete (by mathematical induction).

For unordered tree mining, we stop the extension of candidates that are not in canonical
forms. To prove the completeness of the enumeration, we need to be certain that every
candidate in canonical form can be obtained by the extension of a candidate which is also in
canonical form.

Proposition 2 If T is in canonical form, then every prefix of T is also in canonical form.

Proof The proposition has been proved in the case of labeled trees [25]. Thus, for attributed
trees, the proposition is true if the last element of T is a node associated with an itemset of
size 1. Suppose now that the last element of T is an itemset. Let T be a candidate in canonical
form and x be its last element (the last item in the itemset associated with the rightmost node
of T ). Removing x from T allows to obtain candidate U which is a prefix of T . We have
λ(T ) = λ(U ) ∪ {x}, i.e., λ(U ) is a prefix of λ(T ). With the order previously defined (see
Sect. 4.1.2), λ(U ) > λ(T ) (case 2 of the definition). Then, the order of nodes in the prefix
tree is not changed and the prefix is also in canonical form. �
4.3 Frequency computation

A data structure is used to store all information needed for the mining process. Our structure
is an extension of the vertical representation of trees introduced by Zaki [37,38]. Briefly, each
candidate asubtree is associated with its pattern and several data allowing to pinpoint all its
occurrences in the database. The first candidates, composed of a unique node associated with
one item, are generated by scanning the input database. Using only this unique structure, it is
easy to compute the number of occurrences of each pattern. In addition, this same structure
is sufficient to generate all possible extensions of a given pattern. When a pattern of size k is
processed, all occurrences are extended with tree extension and itemset extension methods
described above to generate new (k+1)-candidates that are themselves stored in the structure.

4.4 Candidate pruning

Rules as the ones specified by Agrawal et al. [1] 20 years ago, can be applied to the case
of atrees: (i) any sub-pattern of a frequent pattern is frequent, and (ii) any super-pattern of
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Fig. 9 IMIT algorithm

an infrequent pattern is non-frequent. As the frequency count is an anti-monotonic function
(extending a pattern cannot lead to a new pattern with a greater frequency), it is possible to
stop the exploration of a branch of the search space when the frequency of a candidate is less
than the minimum support. For example, in Fig. 2, when we examined pattern “a c a” and
found that its frequency was lower than the minimum support, we did not generate candidates
obtained by extending “a c a” (e.g., “a c ab,” “a c a $ b,” “a c a $ $ c”).

In addition, in the case of unordered tree mining, extension of a candidate is stopped if it
is not in canonical form.

4.5 Mining algorithms

We have developed and evaluated three different algorithms. IMIT is used to enumerate all
frequent attributed subtrees, while the algorithms IMIT_CLOSED and IMIT_CONTENT_
CLOSED are designed to mine closed atrees and c-closed atrees, respectively.

4.5.1 IMIT

Figure 9 shows the high level structure of the IMIT algorithm. The algorithm takes in para-
meter a database (D) and a minimum support (minSup). First (line 1), a set C containing
all asubtrees of size 1 is built by scanning D. Then, a loop allows to process every candidate
in the set. The function Get First returns the smallest candidate in the set according to the
order relation defined in Sect. 4.1.2. In line 4, the algorithm does a canonical test (function
isCanonical) and a frequency test ( ft is a function that returns the per-tree frequency of
an atree). A frequent candidate (which is in canonical form) is added to S, the list of solu-
tions (line 7). The frequent candidate is also extended (line 5) to generate new candidates
in the next iteration (line 6). The processing of a candidate finishes by removing it from the
candidate list (line 9).

This algorithm is sufficient to enumerate all solutions, but it has a huge search space.

4.5.2 IMIT_CLOSED

Only enumerating closed atrees (i.e., atrees that are not attributed subtrees of another atree
with the same support) drastically reduces the search space. It involves the storage of every
frequent pattern found with their associated per-tree frequency and their total number of
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Fig. 10 IMIT_CLOSED algorithm

occurrences in the database (the occurrence-match frequency). We define a new functions:
fo which returns the occurrence-match frequency of an atree.

Definition 9 (Closure test) Let T be the candidate atree currently processed, S be the set of
all previously identified frequent atrees and X be the set of candidates generated by extension
of T . We say that T is a closed atree if � ∃T ′ ∈ SUX such that T � T ′ and ft (T ′) = ft (T ).

However, finding an itemset extension of T with the same per-tree frequency as T does not
allow to stop the exploration of other candidates in X . The following additional conditions
must also be satisfied:

Definition 10 (Pruning test) Let T be the candidate atree currently processed, S be the set of
all previously identified frequent atrees and X be the set of candidates generated by extension
of T . If ∃T ′ ∈ X : T � T ′ and fo(T ′) = fo(T ), then T can be pruned from X .

In Fig. 2, for example, the first candidate to be examined is “a” with a per-tree frequency of
3. By extension, we generate, among others, candidate “ab” which has a per-tree frequency
of 3, therefore, candidate “a” is not c-closed as “a” � “ab.” However, pattern “a appears
seven times in the database, while the total number of occurrences of candidate “ab” is 3.
The four times where “a” occurs in an itemset which does not contain “b” may lead to the
generation of other closed patterns. This is the case in Fig. 2 where a right-node extension
of pattern “a” generates candidate “a e” with a per-tree frequency of 3.

The IMIT_CLOSED algorithm, which is used to mine closed asubtrees is presented in
Fig. 10. The structure of the algorithm is similar to IMIT’s structure. The instructions at
the beginning (first 5 lines) and at the end (last 4 lines) are identical. The insertion of the
set of extensions X in the set of candidates C remains (line 7), but in IMIT_CLOSED, this
operation is only performed if the test allowing to end the exploration of X (X pruning test)
fails. The insertion of the current candidate T in the set of solutions is performed (line 10)
only if the candidate is canonical (success of canonical test). The new loop in lines 12–14
is added to remove from the list of solutions the attributed trees that are not closed anymore
(i.e., all atrees that are asubtrees of T with the same per-tree frequency).
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Fig. 11 IMIT_CONTENT_CLOSED algorithm

These added lines require one to perform several subtree isomorphism checks that are
costly operations.

As illustrated in Sect. 5, the algorithm is costly when the set of results is large and it cannot
be used to mine large input databases with low support.

4.5.3 IMIT_CONTENT_CLOSED

For this algorithm, we introduce two subsets of X . XI is the set of atrees generated by
itemset extension of T and XT is composed of tree extensions of T . These sets are obtained
by applying the functions extendI and extendS , respectively.

Definition 11 T is a c-closed atree if � ∃T ′ ∈ SUXI such that T �I T ′ and ft (T ′) = ft (T ).

The extension of T can be ended if ∃T ′ ∈ XI : T � T ′ and fo(T ′) = fo(T ).
The IMIT_CONTENT_CLOSED algorithm for mining c-closed asubtrees is presented in

Fig. 11. This algorithm differs from IMIT_CLOSED algorithm in the following way:

– In lines 6 and 9, � is replaced by �I and X by XI . This allows to only perform itemset
inclusion tests that are less costly than subtree isomorphism checks.

– The search in the set of solutions previously found (those that are asubtree of the current
candidate) is not needed anymore for the extraction of c-closed patterns.

Experiments presented in Sect. 5 show that this third algorithm is a good compromise between
non-redundancy of solutions and execution time.

5 Experimental results

Our algorithms were implemented in C++ using the Standard Template Library (STL). Exper-
iments were performed on a computer with an Intel © Core™ i5-2400 @ 3.10 GHz and 16 Gb
main memory. Performance evaluation was based on total execution time, including all pre-
processing and result output.

Multiple datasets were used to test our algorithms: several synthetic datasets and two real
databases.
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5.1 Synthetic datasets

We modified the synthetic data generation program proposed by Zaki [37] for labeled trees
in order to generate atrees with itemsets of different sizes. We added two new parameters
controlling the minimum and maximum itemset sizes.

From the D10 dataset presented in [37], we generated nine datasets by varying the size
of the itemsets from two to ten. We named these dataset D10 − x , where x represents the
itemset size. Thus, in D10 − 5, the topologies of attributed trees are similar as those in the
D10 dataset, but every node is associated with an itemset of size 5.

The comparison with existing work on labeled tree mining was performed using the D10
dataset (100,000 subtrees), the T1M dataset (1,000,000 subtrees) defined by Zaki [37] and a
new dataset that we called T10M with a number of subtrees T sets to 10,000,000.

5.2 Weblog dataset

We built a dataset based on logs given by our university following the method described
by Zaki [37]. However, instead of labeling nodes with URLs of the browsed pages, we
associated them with itemsets representing keywords of their content. For each visited page,
we collected the ten most frequent words (except common words like prepositions) and used
them as items characterizing the page. Finally, we obtained a set of attributed trees whose
nodes identify visited URLs; their itemsets are keywords associated with pages, and edges
represent the ancestor-descendant relationships on the website tree structure. The dataset is
composed of 126,396 attributed trees with itemsets of size 10 (10 keywords by page).

5.3 Dengue dataset

Dengue is an infectious tropical disease. The virus is transmitted to humans by the bite of an
infected mosquito. The Aedes aegypti mosquito is the most important transmitter or vector
of the dengue virus.

Our real dataset represents the weekly evolution of dengue infection in Nouméa and
suburbs from February 1998 to September 2004. The city is divided into 32 districts, and
each district is characterized by 15 epidemic and environmental attributes (e.g., number of
dengue cases, temperature, precipitation, wind speed and Aedes density level).

Attributes that are normally distributed are discretized into three classes:

– One class, labeled as “NORMAL,” gathers normal values representing 60 % of all mea-
sures centered around the mean,

– One class, labeled as “LOW,” includes the smallest values representing 20 % of all mea-
sures,

– One class, labeled as “HIGH,” includes the largest values representing 20 % of all mea-
sures.

The attributes that are discretized by this way are Breteau Indice (number of positive
containers per 100 houses inspected), IPA indice (number of A. aegypti in late pre-imaginal
stages per inspected house), House (premise) index (percentage of houses infested with A.
aegypti larvae and/or pupae), IHRE (number of A. aegypti in late pre-imaginal stages per
infested house), precipitation (the level of rainfall in milimeters), average and maximum
wind speed, minimum, average and maximum temperature, average humidity, atmospheric
pressure and solar irradiance (in J/cm2 between 2 AM and 2 PM and between 2 PM and
2 AM).
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The only exception is the attribute maximum wind direction that is discretized in NORTH,
EAST, SOUTH and WEST.

From this dataset, we incrementally constructed a data tree forest, where the vertices of
the trees represented the evolution of neighboring areas in space and time. The principle of
our approach is detailed in [30].

We were interested in factors that could highlight the beginnings of an epidemic phase.
As a consequence, we decided that, for every time point, each district in which four or more
cases of dengue had been reported, represented the root of an attributed tree. Each root node
was associated with a set of items which represented the characteristics of an “infected” zone
at a given time point. These trees composed of only one node were then extended to reflect
the evolution of neighboring zones before the report of dengue cases in the “infected” zone
(represented by the root of the tree). We recursively generated for each leaf of a tree (that
contained the characteristics of a zone at a time point t), several edges that linked to nodes
representing the characteristics of neighbor zones at time t − 1 (see Table 1).

Our dataset was built using five time points. Therefore, each tree represented the four-
week evolution of the characteristics associated with zones that leads to the occurence of
dengue cases.

The dataset was composed of 181 attributed trees with each node being associated with 15
attributes. The idea was that frequent patterns in this dataset might give some hints concerning
the evolution of data in the few weeks preceeding the begining of multiple dengue cases.
To filter out common patterns that were not related to the apparition of dengue cases, we
constructed another dataset composed of attributed trees for which roots were associated
with zones where no-dengue case had been reported. This second dataset, that we called
no-dengue dataset, was composed of 9087 attributed trees. Both datasets were used to search
distinguishable features, i.e., patterns that are frequently present before the report of several
dengue cases, but rares in the absence of dengue.

5.4 Performance evaluation on labeled trees

To position our algorithm w.r.t. existing works, we compare its execution time to mine labeled
trees against HybridTreeMiner [11], the best performing algorithm in the literature for mining
unordered trees.

Both algorithms successfully mined all datasets with a minimum support as low as 2. For
T10M, the largest dataset, composed of ten millions labeled trees, this represents a relative
support of 0.00002 %. With such a low support, more than 35 million frequent patterns were
returned. With a support of 2, HybridTreeMiner mined the dataset in 15 min, and it took IMIT
four times longer to do it (1 h). Figure 12 shows the performances comparison of IMIT and
HybridTreeMiner for mining T10M.

On the other datasets, the performance of the two algorithms is in the same order of
magnitude. HybridTreeMiner clearly outperforms IMIT on all datasets and for all sup-
port values by a factor varying from 2 to 4. It is perfectly normal that our algorithm,
designed to mine attributed tree, is less efficient than algorithms specifically dedicated to mine
labeled trees. As such, it is normal to perform worst on mining labeled trees than dedicated
implementations.

In light of these experiments, we can state that, for both algorithms, the increase in the
number of trees has a moderate impact on processing time. For example, for the smallest
support of 2, the processing time doubles for each tenfold increase in the dataset size.
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Table 1 Creating a database of attributed trees from the dengue dataset

The city is divided in districts characterized The situation at each time point
by 15 epidemic and environmental attributes. is represented by an attributed graph.

The whode dataset is represented The roots of attributed trees
by a succession of attributed graphs. correspond to infected districts.

Nodes that are just below a root Nodes at nth level below a root
correspond to neighbor zones at time t − 1. represent neighbor districts at time t − n.
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Fig. 12 Performance comparison of IMIT and HybridTreeMiner for mining T10M dataset
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Fig. 13 Execution time of IMIT_CONTENT_CLOSED for mining c-closed sets of induced unordered pat-
terns on 9 synthetic datasets

5.5 Performance evaluation on attributed trees

Figure 13 shows the execution time for mining content-closed patterns. We can see that the
increase in the size of itemsets associated with nodes has a huge impact on performance.

For comparison, the mining of D10 dataset in which one item is associated with each
node is performed in less than 1.6 s at 1 % support. With two items associated with nodes, the
processsing takes 6.43 s. With itemsets of size 4, it takes 48 s and 1 h 15 min with itemsets of
size 7. This shows that mining attributed trees is extremely more computing intensive than
mining labeled trees and the difference is widely underestimated because only content-closed
patterns were mined.

Figure 14 shows the execution time and the number of patterns found by the three versions
of IMIT for mining induced unordered patterns on D10-3 dataset. As one can see in the figure,
mining all patterns generates a huge number of solutions and takes a long time, e.g., mining
the D10-3 dataset with a minimum support of 5 % outputs half a million patterns in 3 h with
the basic IMIT algorithm.
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Fig. 14 Execution time (left plot) and number of patterns found (right plot) by the different versions of IMIT
for mining induced unordered patterns on D10-3 dataset

Mining content-closed atrees allows to reduce both the number of patterns and the execu-
tion time. Thus, with the same dataset, at 5 % minimum support, 104 content-closed patterns
are found in 8 s.

As shown in the same figures, the search for closed patterns allows to further reduce the
number of patterns. At 5 % minimum support, for example, the number of patterns drops to 56,
while the execution time remains the same. However, because of the costly subtree isomor-
phism checks, in return, performance collapses when patterns become numerous. At 0.5 %
minimum support, for example, 4530 content-closed patterns are found in 40 s but it takes
338 s to mine the 1085 closed patterns. The difference in computation time increases as the
minimum support decreases. At 0.2 % minimum support, it takes 3 h to mine the 2870 closed
patterns while it only takes 8 min to enumerate the 17,097 content-closed patterns. In addition,
the mining of content-closed patterns can be pursued further to a minimum support of 0.09 %.
Using this minimum support, the algorithm generates 61,844 patterns in 1 h and 45 min.

Figure 15 shows the execution time and the number of patterns found by the 3 versions
of IMIT for mining induced unordered patterns on D10-5 dataset. The behavior of the three
algorithms is very similar to what was found on the D10-3 dataset.

5.6 Mining the weblog dataset

The weblog dataset contains fewer attributed trees than the synthetic datasets used before,
but as more items are associated with each node, the dataset becomes more difficult to mine.

With a minimum support of 40 %, IMIT extracted 3069 frequent patterns in 41 min. How-
ever, at 35 % minimum support, this algorithm did not succeed to extract all frequent patterns
in less than 10 h.

In comparison, with a minimum support sets at 40 %, both IMIT_CLOSED and
IMIT_CONTENT_CLOSED extracted 18 patterns in 85 and 83 s respectively. By lower-
ing the minimum support to 35 %, the computation took 10 times more time to output 57
patterns.

Detailed results are presented in Fig. 16. On the weblog dataset, the closed patterns and
content-closed patterns found were identical for all support values between 6 and 50 %.
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Fig. 16 Performances of IMIT_CLOSED and IMIT_CONTENT_CLOSED for mining induced unordered
patterns on the weblog dataset

Mining the weblog dataset with a minimum support of 6 % lasted 6 h and returned 360
patterns. It was not possible to get results with smaller support values.

At 6 % minimum support, the patterns extracted were shared by more than 7000 logs.
So, they represented very general features, and it was not possible to extract any useful
information from them.

5.7 Mining the dengue dataset

The dengue dataset contains few attributed trees but, as more items are associated with each
node, this dataset is intractable for small support values. Fortunately, we were not trying to
extract patterns with small support values as we were interested in identifying global trends
in the dataset.

We decided to mine the dataset using a minimum support of 70 %. With IMIT, 127 pat-
terns were identified in 19 min and 7 s. The number of extracted patterns was reduced to
112 by using IMIT_CONTENT_CLOSED at the price of a slight increase of the process-
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Table 2 Legend of items used in
Table 3

Id Description

1 IHRE = HIGH

2 Precipitation = LOW

3 Maximum wind direction = EAST

4 Average temperature = HIGH

5 Minimum temperature = HIGH

6 Solar irradiance 2AM–2PM = HIGH

7 Solar irradiance 2PM–2AM = LOW

10 Average humidity = NORMAL

14 Average humidity = HIGH

15 Solar irradiance 2AM–2PM = LOW

Table 3 Frequent patterns in the
dengue dataset

Patterns Freq. in dengue
dataset

Freq. in no-dengue
dataset

1:2:4 79.33 28.93

1:2:4:6 73.74 23.61

1:3:4 79.89 24.87

14 1:4:5 $ 1 75.14 18.55

14 1:4:5 $ 4:5 74.86 18.40

14 1 $ 4 75.46 20.27

14 7:15 $ 7 78.21 26.55

3 1:4 $ 1 69.27 20.59

ing time to 19 min and 34 s. IMIT_CLOSED proved to be the best choice to process this
dataset, as it reduced the number of patterns to 98 and the processing time to 18 min and
37 s.

These 98 induced patterns that occurred frequently before the report of several dengue
cases could not be considered as indicators of dengue occurrence as they might also have
occurred in a situation where no-dengue case was reported. Unfortunately, all frequent pat-
terns in the dengue dataset were also frequent in the no-dengue dataset. The only exception
was a pattern that highlighted the fact that before the occurrence of several dengue cases in a
district, a high humidity was measured, while a moderate humidity level had been measured
the week before in several neighboring districts. Using the legend in Table 2, the pattern was
“14 10 $ 10 $ 10.” It was present in 80.11 % of the dengue case and in only 27.28 % of the
no-dengue dataset.

Mining embedded patterns allow to catch successions of events with time gaps. Unfor-
tunately, the mining of embedded patterns at 70 % minimum support failed with IMIT and
IMIT_CLOSED. Only IMIT_CONTENT_CLOSED was capable to process the dataset. The
algorithm extracted 9265 patterns in 19 h. As for induced pattern mining, we collected the
patterns that were frequent in the dengue dataset but rare in the no-dengue dataset. From the
9,265 closed patterns found in more that 70 % of the trees in the dengue dataset, only eight
of them were present in the no-dengue dataset with a support below 30 %.

Table 3 shows the list of these patterns using the legend given in Table 2. The frequency
of the patterns is given in the dengue dataset and in the no-dengue dataset.
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The patterns listed confirmed some background knowledge in the domain. For example,
dengue is preceded by a high temperature associated with a high IHRE index followed by a
high humidity; a high IHRE index with a high temperature followed by east wind; or also
a low solar irradiance followed by high humidity. A combination of the following factors
is also indicative of dengue: High IHRE, low precipitation, high-temperature and high solar
irradiance from 2 AM to 2 PM.

6 Conclusion and perspectives

In this paper, we introduced the problem of mining attributed trees. We investigated three
types of attributed trees: atrees, closed atrees and c-closed atrees. We proposed three algo-
rithms to mine these patterns. C-closed atrees are a new condensed representation of frequent
atrees that is defined w.r.t. itemset inclusion only. As shown by our experiments, mining c-
closed atrees provides a good compromise between performances and succinctness. Indeed,
mining all frequent atrees returns a huge number of patterns, and mining only closed ones
is time consuming due to the cost of subtree isomorphism tests. The efficiency of the pro-
posed algorithm, IMIT_CONTENT_CLOSED, has been demonstrated on large synthetic
datasets. It was also used to mine weblog data and a dengue dataset. Concerning the dengue
dataset, we show that some patterns, although already known, were characteristics of dengue
events.

One of our future direction of work is to extend the proposed algorithm to effectively
mine frequent closed patterns. Another direction consists in developing similar methods for
mining more complex structures such as attributed graphs.
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