Proceedings of the first ECOOP Workshop on XML and Object Technology (XOT’00). Sophia-Antipolis; 2000.

A distributed editing environment for XML
documents

Pasquier C. and Théry L.

Abstract

XML is based on two essential aspects: the modelization of data in a tree like structure and the separation
between the information itself and the way it is displayed. XML structures are easily serializable. The separation
between an abstract representation and one or several views on it allows the elaboration of specialized interfaces
to visualize or modify data. A lot of developments were made to interact with XML data but the use of these
applications over the Internet is just starting.

This paper presents a prototype of a distributed editing environment over the Internet. The key point of our
system is the way user interactions are handled. Selections and modifications made by a user are not directly
reflected on the concrete view, they are serialized in XML and transmitted to a server which applies them to the
document and broadcasts updates to the views.

This organization has several advantages. XML documents coding selection and modification operations are
usually smaller than the edited document and can be directly processed with a transformation engine which
can adapt them to different representations. In addition, several selections or modifications can be combined
into an unique XML document. This allows one to update multiple views with different frequencies and fits the

requirement of an asynchronous communication mode like HTTP.
Inria Sophia Antipolis, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis, France

1. Introduction

XML is the central point of the far-reaching process of stan-
dardization that is going to alter the way information is han-
dled. The deployment of XML related technologies will have
a large impact on operations like structured editing, storage,
information exchange, data transformation, querying, and
rendering.

Two essential aspects of XML have been inherited from
SGML [8]: the modelization of data in a tree like structure
and the separation between information itself and the way it
is displayed. An XML document is typically a serialization of
a tree with every node and leaf tagged. It is a convenient user-
readable and platform-independent representation, well-suited
for transmission over a network. The separation between an
abstract representation and one or several views on it allows
the elaboration of specialized interfaces to visualize or modify
data.

A lot of developments were made to interact with XML
data but the use of these applications over the Internet is still
under development. The World Wide Web Consortium pro-
poses several standards to visualize XML documents (CSS [4],
XSL [13]) and to transform them (XSLT [14]). However, these
standards are mainly defined to display documents, not to in-
teract with them. If we consider real e-commerce applications,
displaying and modifying data will be needed. For example,
a vendor may want to update via Internet (using a portable
computer or a mobile phone) the database of its company with
new information relative to a visited client.

On new XML browsers, some interaction with a displayed
document can nevertheless be realized. Documents are inter-
nally modelized as DOM trees and can be manipulated with
methods that access public DOM APIs. The problem with
this solution is that only the concrete view of a document is
edited, not the data itself. This paper presents a prototype
of a distributed editing environment over the Internet. Its
architecture is based on the software development environ-
ment Centaur [1] and ideas presented in [2] and [5]. The key
point of our system is the way user interactions are handled.
Selections and modifications made by a user are not directly
reflected on the concrete view. They are serialized in XML
and transmitted to a server which applies them to the docu-
ment and broadcasts updates to the views. Bidirectional cor-
respondences between a source and a result tree are expressed
in the declarative language XPPML. It is used to transform
serialized user-interactions made on the source structure to
equivalent operations applicable to the result structure.

2. Interacting with XML documents

Editing an XML document over an asynchronous, unstable
and rather slow protocol like HTTP implies minimizing the
amount of information exchanged. In particular when editing
large documents, it is not a very good strategy to retransmit
every time the modified document. User interactions are
encoded as XML documents. Data transmitted on the network
represent actions. The first set of actions declares external
operations on the structure (selection, modification, redisplay,

A distributed editing environment for XML documents — 2/7

etc). The second set concerns updates to be applied on the
structure (selection of a given subtree, deletion of a node, etc.).
In our prototype, we have defined two actions, selection and
modification, that are both based on an unambiguous way to
identify a node on a tree.

We take as an example the simple mathematical expression
"2%(8/2+5)’ which will be used throughout this paper. It is
expressed by the following XML document called "exp’:

<?XML version="1.0"7>
<exp>
<mult>
<int value=’2’/>
<plus>
<div>
<int
<int
</div>
<int value=’5’/>
</plus>
</mult>
</exp>

value="8"/>
value="2"/>

Paths

One can identify a node in the tree with an expression spec-
ifying a path to this node. This can be expressed with the
XPath [12] standard by starting from the document’s root and
specifying either the name of all the encountered child nodes
or their relative positions. For example, the node '8/2+5° can
be equally designated by the following XPath expressions:

/exp/mult/plus/«[1]/*[1]/%[2]

Note that identifying subtrees by a list of node names is am-
biguous, since two different subtrees could have the same
path. For this reason, we prefer the second solution. In order
to transmit paths, we propose to represent a XPath location
which uses relative positions by an ipath (IntegerPath) XML
element. The location of the node '8/2+5’ is thus expressed
by:

<ipath>

<move num=’1"/>

<move num=’2’/>
</ipath>

The starting point of the path is the root node (called docu-
mentElement in DOM) and not “the parent of the document
element” as it is specified in XPath. Then, the empty element
<ipath/> identifies the root of the document, <ipath>
<move num=’1’/></ipath> its first child.

Selection path

We use selection path to designate different elements of a
document. These elements may belong to different selec-
tions. Selections are represented by symbolic names. A spath
element is defined by the following DTD:

<!ELEMENT spath (selectx,
<!ELEMENT select EMPTY>
<!ATTLIST select name NMIOKEN #REQUIRED>

<!ELEMENT move EMPTY>
<!ATTLIST move num NMIOKEN #REQUIRED>

(move, spath)x)>

A spath element is composed of two sets of elements. The
first one is used to declare and name the selections on the
current node. The second one is composed of pairs of move
and spath elements. Each spath represents the selection path
corresponding to the sub-element denoted by the move.

For example, a selection called ’se/A’ of the node ’5’ and
a selection ’selB’ of the node '8/2+45’ is expressed by the
following spath element:

<spath>
<move num=’1’/>
<spath>
<move num=’2’/>
<spath>

<select name=’selB’/>
<move num=’2’/>
<spath>
<select name=’selA’/>
</spath>
</spath>
</spath>
</spath>

Selection paths are general enough to be used for different
purposes. On the client side it can be used to represent exten-
sion to an existing selection. On the server side it can be used
to represent all the existing selections.

Modification path

A modification path memorizes modifications done on a doc-
ument. The following DTD describes the structure of a mpath
element:

<!ELEMENT mpath (element,

<!ATTLIST mpath type
(move| delete | insert | change) move>

<!ELEMENT element (%targetElt;)>

<!ELEMENT move EMPTY>

<!ATTLIST move num NMIOKEN #REQUIRED>

(move, mpath)x*)>

A mpath has an attribute type which indicates the kind of mod-
ification to perform (deletion, insertion or replacement). By
default, if no attribute is given, the type is move. Values that
are changed or inserted are specified under the tag element.

As an example, one can evaluate the node '8/2” and replace
it with its integer value. This is expressed by the following
mpath element:

<mpath>
<move num=’1’/>
<mpath>
<move num=’2’/>
<mpath>

<move num=’1’/>

<mpath type=’change’>
<element>

<int value=’4’/>

</element>

</mpath>

</mpath>
</mpath>
</mpath>

A modification path can be applied to a document to perform
the memorized operations. Note that this application can be
delayed. Two mpath elements can be combined in a new

modification path which amalgamates the successive opera-
tions. For example, the previous modification path and the
one that corresponds to the deletion of the node identified by
the selection ’selA’ gives the following combined path:

<mpath>
<move num=’1"/>
<mpath>
<move num=’2’/>
<mpath>

<move num=’1"/>
<mpath type=’change’>
<element>
<int value="4’/>
</element>
</mpath>
<move num=’2’/>
<mpath type=’delete’ />
</mpath>
</mpath>

When applied to a document, this mpath will replace the
element '8/2° with 4’ and will remove the element ’5’. The
same mpath can also be applied to the current selection to
compute a new selection path compatible with the updated
structure of the document.

Modification paths are generic enough to represent any
kind of modification. They represent a convenient way to
interact with large documents over a network since only the
new elements of the document need to be transmitted.

3. Communication with a user interface

Except for XML editors that let the user directly write the tags
of XML documents, standard editing environments propose an
interface between the user and the logical structure. Usually,
selections and modifications are done on a concrete view of
the data. User interactions are transformed into actions on the
logical structure and the layout of the view is recomputed.

Our concepts of selection and modification paths can be
applied to modelize the communication between a concrete
view and an abstract representation. Representing actions
by valid XML documents makes it possible to use standard
tools to manipulate them. Let’s take the example of an XML
browser in which the displayed document is obtained by trans-
forming an initial document. All modifications made on the
source document can be reflected to the view by transmitting
only a modification path.

Modification paths on the logical tree and the concrete
tree can largely differ. However, one can be generated from
the other by using a transformation process similar to the
one used to get the initial document. This means that the
transformation tool should be capable not only of processing
the initial document but also of transforming selection and
modification paths from one structure to another.

Standard transformation languages, like DSSSL [7] or
XSLT [14] are well-suited for processing XML documents.
However, current implementations of these languages are
based on a batch process that transforms the whole source
document into a target one. Once this is done, no link is kept

A distributed editing environment for XML documents — 3/7

between the two structures. In addition, there is no available
implementation capable of doing a reverse transformation
(from a target structure back to the source one). Adding this
dynamic capability to engines based on DSSSL or XSLT
standards seems difficult because of the expressiveness of
these languages. In our project, we have developed a transfor-
mation engine based on XPPML (Xml Pretty-Printing Meta
Language) that is strictly less powerful than XSLT but satisfies
all our dynamic requirements. It is a modified version of the
transformation engine developed for the Aioli system [11].

4. XPPML

XPPML is an XML extension for the pretty-printing meta lan-
guage PPML [10] defined in the Centaur system. An XPPML
specification is a collection of unparsing rules associated with
abstract syntax patterns. The concepts of XPPML are very
close to those found in XSLT. Basically, it is a language for
transforming XML documents into other representations. A
transformation in the XPPML language is expressed as a well-
formed XML document. It describes rules for converting
a source tree into a result one by associating patterns with
templates. The formatting machine generates a result struc-
ture by traversing the source tree and looking for a pattern
that matches each node. When a match is found, the corre-
sponding template is instantiated to create parts of the result
tree. Features of XPPML include contextual formatting, con-
ditional layout over external boolean functions and inclusion
of user-defined external functions.

The formatting machine makes use of the XPPML rules
to generate the path on the result tree corresponding to a given
path on the source one but is also able to retrieve the position
on a source structure corresponding to a position on a result
one.

A typical XPPML document has the following structure:

»

<x:prettyPrinter ppName="...” langName="...
xmlns:x="http: //www—sop . inria. fr/lemme/xppml/1.0"
>

<x:extension name="..."/>
<x:import package="..."/>
<x:rule>

</x:rule>

</x:prettyPrinter>

An XPPML specification is fully identified by both the name
of the pretty printer and the name of the language to which
it applies. This allows one to refer and retrieve, for example,
the standard pretty printer for the Java language or the pretty
printer Y for the language Z. These two identifiers are stored
in the attributes ’ppName’ and ’langName’ of the element
"prettyPrinter’.

Modularity of pretty-printing declarations is realized through
one or several ’extension’ elements where the names of other
XPPML definitions to be included are specified. The "import’
element is used to declare the package where external Java
functions should be searched.

The core of the XPPML declaration is defined by a list
of ’rule’ elements composed of a ’pattern’ element and a
layout. A pattern is defined by a ’femplate’ element and zero
or more additional constraints. The 'match’ attribute in the
‘template’ element is a pattern that identifies the source node
to which the rule applies. For example, the following XPPML
specification defines the layout of our ’exp’ document:

<x:prettyPrinter ppName=’std’ langName=’exp’
xmlns="http: //www—sop.inria. fr/lemme/figue/1.0’
xmlns:x="http: //www—sop . inria . fr/lemme/xppml/1.0 "
>
<x:rule>
<X:pattern>
<x:template match="mult(xx,xy)’ />
</x:pattern>
<h>
<x:variable name=’x’/>
<atom value=’"x*’/>
<x:variable name=’y’/>
</h>
</x:rule>
<x:rule>
<X:pattern>
<x:template match="mult/plus(xx,*xy)’ />
</x:pattern>
<h>
<atom value="("/>
<x:variable name='x’/>
<atom value="+"/>
<x:variable name=’y’/>
<atom value=’)’/>
</h>
</x:rule>
<x:rule>
<X:pattern>
<x:template match="plus(xx,xy)’ />
</x:pattern>
<h>
<x:variable name='x’/>
<atom value="+’/>
<x:variable name=’'y’/>
</h>
</x:rule>
<x:rule>
<X:pattern>
<x:template match=’x=int’/>
</x:pattern>
<x:extFun name=’identitypp ">
<x:arg value=’x’ type=’var’/>
</x:extFun>
</x:rule>
</x:prettyPrinter>

XML namespaces are used to distinguish between XPPML

constructs and elements corresponding to the output structure.

This example uses Figue’s syntax [3] for the layout but other
output format like HTML or xsl:fo can equally be used. Figue
is an incremental bi-directional layout engine that handles a
limited set of combinators like "4’ to specify an horizontal
layout, v’ for a vertical one, ’atom’ for a terminal box and
some other specialized mathematical constructs.

The first rule matches a ‘mult’ node composed of exactly
two children. Its layout part specifies that an horizontal box
has to be created (use of Figue’s horizontal combinator '/’)
and filled with the concrete tree obtained by a recursive call

A distributed editing environment for XML documents — 4/7

of the formatting machine on the node’s first child, a concrete
leaf with the textual value '*” and the layout of the second
child.

Contextual pattern are specified in the left-hand side of a
rule, as in the second rule which matches a ’plus’ node that
have a 'mult’ node as parent. It is also possible to define
rules identified by a context name. When a contextual pretty-
printing is required, a context name is added to the recursive
call.

In the fourth rule, an external Java method called ’iden-
titypp’ is used to display the attribute 'value’ of the node
representing an integer. External functions can also be used
with conditional layout constructs defined with the XPPML
instructions ’if” and ’case’.

Editing and rendering are handled by Figue. During the
editing process, Figue communicates to the formatter the loca-
tion of concrete subtrees which have been selected or modified.
The formatter retrieves the corresponding abstract trees, per-
forms the necessary modifications and returns back to the
layout engine the selection or modification paths applicable
on the concrete tree. With this information, Figue performs
an incremental update on the view.

Aioli can be used as a server which communicates with
clients through HTTP requests. Documents are stored on
the server side where updating and formatting operations
are performed. Information manipulated on the server side
is represented by DOM objects. These are transformed to
XML text format and are transmitted to the client through
HTTP(S). Standard HTTP protocol is used; marshaling and
unmarshaling are done with application methods.

In our current implementation, several clients can be con-
nected to the same server. Figue is one of the possible clients
but standard web browsers can also be used. New clients
may join and watch the progress of existing editing sessions
but problems specific to the implementation of a concurrent
editing environment [9] have not yet been studied.

5. A typical editing session

If our example document is accessible at the url 'docURL’ and
our server is located on 'myserver’, then a typical invocation
of the transformation engine is done by the following HTTP
request:

http: // myserver&doc=docURL&ppml=std&type=figue

The arguments ‘ppml’ and 'type’ correspond respectively to
the name of the prettyprinter to use and the type of syntax
used to codify the concrete tree. The client first declares a
new selection called current:

clientMess #l: <setSelection type=’Single’

name=’current’ />
The server answers with a reference to the new selection. This
information is needed because if several clients are accessing
the same document, the name of the selection may be already
used. In that case, the server returns a selection with a different
name:

A distributed editing environment for XML documents — 5/7

type="Single”
name="current” />

serverMess #1: <selection

Then the client requests for a copy of the document using the
appropriate prettyprinting:
clientMess #2: <redraw />

The server sends the corresponding concrete tree using the
Figue syntax:

serverMess #2: <redraw>
<H>
<Atom Value="2"/>
<Atom Value="%"/>
<H>
<Atom Value="("/>
<H>
<Atom Value="8"/>
<Atom Value="/"/>
<Atom Value="2"/>

<Atom Value="+"/>
<Atom Value="5"/>
<Atom Value=")"/>
</H>
</H>
</redraw>

The client is now able to display the expression:

Copy 2HEf2+5)
Change
cut

Insert |

Let’s suppose we want to edit the division. We first select
the character ’/” with the mouse: In order to update a selec-

Copy 2*(%%5)
Change
Cut

Insert |

tion, the client needs to send a message to the server. It first
computes the ipath corresponding to the selected expression
in the result tree and sends a message asking for the current
selection to be modified:

clientMess #3: <updateSelection selName=’current >
<ipath>
<move num="3"/>
<move num="2"/>
<move num="2"/>
</ipath>
</updateSelection>

The server acknowledges this message:

serverMess #3: <done/>

The server translates the selection made on the result tree
into a selection on the source tree. In our case, it is the tree

<div><int value=’'8’/> <int value='2’'/></div>

that has generated the character /.

In order to get the value of the selection, the client requests
the list of selection’s changes that are memorized on the server
side:
clientMess #4: <commit type="select”/>

The server responds with a structure specifying that the cur-
rent selection must be placed on the second child of the third
node, i.e. the node representing '8/2°.

serverMess #4: <commit type="select”>
<Change>
<select name="current”/>
</Change>
<Path Rank="3">
<Path Rank="2">

<ExtendSelection
Name="current” />
</Path>
</Path>
</commit>

This information can be used to highlight the current selection
in the editor:

Copy [2*;

Change
Cut
Insert

Note that what we obtain is a structured selection: by
selecting the single character ’/” we get the whole division
expression. Now that the division is selected, we can decide
to evaluate it and replace it with 4:
clientMess #5: <change selName=’current >

<int value="4"/>
</change>

The modification is done on the abstract tree stored on the
server side and an acknowledgement is sent.

serverMess #5: <done/>

To get the modification, the client just asks for the list of
modifications that have been done on the abstract structure
since the last commit request:

clientMess #6: <commit type="modif”/>

The server returns the modifications to be applied on the
concrete tree:

serverMess #6: <commit type="modif”>
<mpath type="move”>
<move num="3"/>
<mpath type="move”>
<move num="2"/>
<mpath type="change”>
<element>
<Atom Value="4"/>
</element>
</mpath>
</move>
</mpath>
</mpath>
</commit>

The client can then reflect these modifications on the editor:

Copy [2*(4+3)
Change

Cuft

Insert

The modification may have changed the values of some
selections. So, the client asks for their new values:

clientMess #7: <commit type="select”/>

The modification has only replaced a selected tree; nothing
has changed:

serverMess #7: <commit type="select”>
<Change>
<select name="current”/>
</Change>
<Path Rank="3">
<Path Rank="2">

<ExtendSelection
Name="current” />
</Path>
</Path>
</commit>

The client can update the editor with the selection:

6. Conclusion

The solution described in this paper has several advantages.
XML documents coding selection and modification operations
are usually smaller than the edited document and they are di-
rectly processed by a transformation engine which adapts

A distributed editing environment for XML documents — 6/7

them to several representations. In addition, the possibility to
group several selections or modifications into a single XML
document allows us to update multiple views with different
frequencies and fits the requirement of an asynchronous com-
munication mode like HTTP.

Several clients with different connection speeds can col-
laborate in a single editing session. For the moment, specific
aspects concerning concurrent editing problems have not yet
been tackled. We are aware that a lot of problems have to be
resolved in order to provide a full featured collaborative envi-
ronment. Still, we believe that what we have presented here
can be used as a valuable basis for more elaborated protocols.

XPPML is less expressive than XSLT. Any XPPML speci-
fication can be easily translated into XSLT. XPPML has been
designed so that a dynamic link between the source structure
and the transformed one could easily be maintained. Doing
this for XSLT seems more problematic. For example, a trans-
formation rule in XSLT can have access to any node of the
source document, even those localized outside the matched
subtree. This means that a single modification in the source
document can potentially affect the overall result.

Our system has been successfully tested with the dis-
tributed editing of large Java programs. User-interactions
are quickly processed and reflected to the client. The unique
problem of performance we had to face was only with the
initial transmission of the formatted document which may be
very large. We are studying possibilities to transmit only the
part of the structure needed by the client (the subtree visible in
the window for example) or to allow several clients to access
different subtrees of a same document.

For the moment, selections and modifications can only be
done on nodes of the tree. It is sufficient for editing highly
structured structure with few unconstrained text fields, like
the kind of documents we have presented here. However, for
editing general XML documents, it is necessary to represent
selections or modifications of parts of textual fields. The
concept of range used in the specification of DOM level 2 [6]
which represents a selection by a pair node + offset will be
implemented in the next version of our system.

In our organization, the amount of software on the side
of the client is kept to a minimum. It is composed of a com-
munication layer that sends and receives messages over the
network and a layout engine. All the other components are
concentrated in the server. It is then particularly adapted to
situations where clients have sparse resources.

Acknowledgements

This work has been done in the framework of Dyade, the
Bull-Inria Research Joint Venture.

References

(1 p Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn,
B. Lang and V. Pascual, CENTAUR: The system, Proceed-

A distributed editing environment for XML documents — 7/7

ing of the Third Symposium for Software Development
Environments (SDE3), Boston, December 1988.

(21 D. Clément, A distributed architecture for programming
environments, Proceedings of the fourth ACM SIGSOFT
symposium on Software development environments, De-
cember 3-5, 1990, Irvine, CA USA.

B! B. Conductier, L. Hascoét, L. Théry, Figue’s Documenta-
tion,
see http://www-sop.inria.fr/croap/figue/

41 CSS2 World Wide Web Consortium. Cascading Style
Sheets, level 2 (CSS2). W3C Recommendation. See
http://www.w3.0org/TR/1998/REC-CSS2-19980512

(5] A.M. Déry and L. Rideau, Distributed Architecture for
Programming Environment, INRIA Research Report no
2918, June 1996.

6] DOM-Level-2 W3C (World Wide Web Consor-
tium) DOM Level 2 W3C Recommendation. See
http://www.w3.0rg/TR/DOM-Level-2.

[7] DSSSL International Organization for Standardization,
International Electrotechnical Commission. ISO/IEC
10179:1996. Document Style Semantics and Specification
Language (DSSSL). International Standard.

8] SO 8879:1986, Information processing — Text and of-
fice systems — Standard Generalized Markup Language
(SGML).

1 Israel Z. Ben-Shaul, Gail E. Kaiser and George T. Heine-
man, An Architecture for Multi-User Software Develop-
ment Environments, Computing Systems, The Journal of
the USENIX Association, 6(2):65-103, University of Cali-
fornia Press, Spring 1993.

(01 a5 Jacobs and Janet Bertot, editors, Centaur 1.2, chapter
The PPML Manual, Inria Sophia-Antipolis, 1993.

a1, Théry, Presentation of Aioli,
see http://www-sop.inria.fr/lemme/Laurent. Thery/aioli.html.

21 Xpath World Wide Web Consortium. XML
Path Language. W3C Recommendation. See
http://www.w3.org/TR/xpath

131 XS World Wide Web Consortium. Extensible
Stylesheet Language (XSL). W3C Working Draft. See
http://www.w3.0rg/TR/WD-xsl

41 XSIT World Wide Web Consortium. XSL Trans-
formations (XSLT). W3C Recommendation. See
http://www.w3.org/TR/xslt

	Introduction
	Interacting with XML documents
	Paths
	Selection path
	Modification path

	Communication with a user interface
	XPPML
	A typical editing session
	Conclusion
	Acknowledgments
	References

