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Abstract 

Background  Weaning from mechanical ventilation (MV) is a key phase in the management of intensive care unit 
(ICU) patient. According to the WEAN SAFE study, weaning from MV initiation is defined as the first attempt to sepa-
rate a patient from the ventilator and the success is the absence of reintubation (or death) within 7 days of extuba-
tion. Mortality rates increase with the difficulty of weaning, reaching 38% for the most challenging cases. Predicting 
the success of weaning is difficult, due to the complexity of factors involved. The many biosignals that are measured 
in patients during ventilation may be considered “weak signals”, a concept rarely used in medicine. The aim of this 
research is to investigate the performance of machine learning (ML) models based on biosignals to predict spontane-
ous breathing trial success (SBT) using biosignals and to identify the most important variables.

Methods  This retrospective study used data from two centers (Nice University Hospital, Archet and Pasteur) collected 
from 232 intensive care patients who underwent MV (149 successfully and 83 unsuccessfully) between January, 2020 
and April, 2023. The study focuses on the development of ML algorithms to predict the success of the spontaneous 
breathing trial based on a combination of discrete variables and biosignals (time series) recorded during the 24 h 
prior to the SBT.

Results  For the models tested, the best results were obtained with Support Vector Classifier model: AUC-PR 0.963 
(0.936–0.970, p = 0.001), AUROC 0.922 (0.871–0.940, p < 0.001).

Conclusions  We found that ML models are effective in predicting the success of SBT based on biosignals. Predicting 
weaning from mechanical ventilation thus appears to be a promising area for the application of AI, through the devel-
opment of multidimensional models to analyze weak signals.
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Take Home Message

•	 The concept of “weak signals” is underused in medi-
cine, because interpreting them is complex. The use 
of machine learning models to identify and interpret 
weak signals produces promising results

•	 Predicting the success of weaning is crucial for the 
management of patients on mechanical ventilation. 
This study suggests the application of multidimen-
sional machine learning models to routinely collected 
biosignals could help predict spontaneous breathing 
trial success.

Background and significance
Endotracheal intubation is one of the most common 
resuscitation procedures and can be necessary for up to 
90% of patients admitted to an intensive care unit (ICU), 
depending on the country [1]. This procedure has been 
shown to cause several complications, including: severe 
hypoxemia, severe arterial hypotension and hypoxic car-
diac arrest [2, 3]. The weaning period is a key stage in the 
management of patients on mechanical ventilation (MV) 
and can take up half of the hospital stay. Weaning is 
defined as the first attempt to remove a patient from the 
ventilator, and success is the absence of reintubation or 
death within 7 days after extubation [4–6]. Spontaneous 
breathing trial (SBT) is commonly used to assess patient’s 
readiness to be weaned. Up to 35% of patients subse-
quently experience extubation failure [7]. Regardless 
of the risks of reintubation, the mortality rate increases 
dramatically with the difficulty of weaning and reaching 
38% in patients with most difficult weaning [8, 9]. Fur-
thermore, the longer weaning is delayed, the higher is 
the length of hospital stays and the higher is the risk of 
failure [8]. Therefore, more reliable predictions of wean-
ing success would not only assist clinicians and improve 
patient outcomes, but could also potentially have an eco-
nomic impact by reducing hospital stays.

Artificial intelligence (AI) has already found several 
applications in various areas of medicine, particularly in 
the field of critical care, such as the management of fluid 
administration and vasopressors in patients with septic 
shock, prediction of sepsis or management of acute kid-
ney injury [10–16]. However, data on the use of AI, and 
in particular machine learning (ML), in the MV wean-
ing process are still scarce [14, 17, 18]. ML is a branch 
of AI characterized by models that learn based on data 
[19, 20]. The goal of ML is to discover recurring pat-
terns in data sets, such as numbers, words or images in 
order to make predictions about new data [21]. ML algo-
rithms can be divided into two categories, supervised and 

unsupervised. Supervised algorithms, further divided 
into classification and regression algorithms, are based 
on learning with labeled data [20, 22]. Unsupervised algo-
rithms, divided into clustering and dimensional reduc-
tion algorithms, do not require data labeling [22]. Several 
literature reviews have examined the potential impact of 
ML in everyday medical practice and in biology [23–25].

A key area in which ML may advance medical prac-
tice is in identifying and interpreting weak signals. Weak 
signals, first defined by Ansoff in the late twentieth cen-
tury, are signals that appear to be incomplete, unstruc-
tured and unprocessed [26]. They are early, low-intensity 
pieces of information that indicate an emerging trend. 
If detected and interpreted accurately, they allow future 
events to be anticipated and thereby facilitate an appro-
priate response. In general, their sources and natures can 
vary from environmental to biological [27]. In the con-
text of MV weaning, biological data, such as respiration 
and heart rate, may be weak signals that could be used to 
predict patient outcomes if processed appropriately. They 
are not widely used in this way because they are difficult 
to interpret, but they are interesting and original sources 
of data [28–32]. Few studies have used them to predict 
MV weaning outcomes [33, 34].

The aim of this research was to investigate the perfor-
mance of ML models based on biosignals in predicting 
the success of SBT and identifying the most important 
variables.

Objectives
We aim to develop different ML models to predict SBT 
success or failure based on variables that were routinely 
collected during ICU patient care. Then, we assess the 
performance of the models and identify which variables 
are most important in predicting SBT success.

Materials and methods
Data collection and study sample
This retrospective study used clinical, biological and 
biosignal data collected from patients who underwent 
MV in ICU at Nice University Hospitals l’Archet and 
Pasteur 2, tertiary teaching hospitals in the South of 
France, from January 2020 to April 2023. Data prior to 
January 2020 were excluded due to high levels of missing 
data. All the data (clinical, biological and biosignal) were 
obtained directly from electronic medical records and 
did not require any additional measurements. Patients 
prior to 2020 were excluded because the data quality was 
insufficient.

We screened all patients admitted to the ICU who 
underwent MV. Patients were included if they were over 
18 years of age and underwent at least one SBT. The SBT 
could be performed in the following ways: T-piece test, 
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or with a pressure support ventilation, with a positive end 
expiratory pressure (PEEP) of 4 (PEEP4) or with PEEP of 
0 (ZEEP) [5, 35]. Patients were excluded if: no electronic 
report of the result was found, the patient was trans-
ferred to another department before the SBT was per-
formed, the withdrawal test was not clearly explained in 
the medical record, or self-extubation or death occurred 
before the SBT. If more than one SBT was performed, 
only the first was considered in this study.

Finally, we included a total of 232 patients in this study.
This study was approved by the French Intensive Care 

Ethic Committee (CE 23-017) and was registered on 
ClinicalTrials.gov (NCT05886803).

Outcomes
The primary outcome of this study was the performance 
of different ML algorithms in predicting the success 
of the SBT. The criteria for SBT failure were agitation, 
altered mental status, respiratory rate > 35/min, signs of 
respiratory distress, hemoglobin oxygen saturation meas-
ured by pulse oximetry < 90%, or an increase of heart rate 
or blood pressure > 20% from baseline at the end of SBT 
[36].

The secondary outcome was to determine which fea-
tures were important in the algorithms’ output.

Predictors
We included both discrete and continuous variables 
(biosignals). The discrete variables were: demograph-
ics (sex, age, inclusion center), comorbidities, sever-
ity scores at admission (Simplified Acute Physiology 
Score II or SAPSII, Apache2, Sepsis-related Organ Fail-
ure Assessment or SOFA), main reason for admission, 
main reason for intubation, body mass index (BMI) at 
time of SBT, weight gain since ICU admission, weaning 
test type (ZEEP, PEEP4, T-tube), non-invasive ventila-
tion prior to intubation, ventilation characteristics (total 
number of days of invasive MV, time between intubation 
and first separation attempt, total number of days in vol-
ume-controlled ventilation (VCV) mode, total number 
of ventral decubitus, use of inhaled nitric oxide), use of 
drugs during SBT (purpose and dose), use of extra-renal 
replacement (type and duration), presence of ventilator-
associated pneumonia (VAP) before SBT and biology 
at the time of SBT. The continuous variables measured 
as time series were heart rate, systolic blood pressure, 
diastolic blood pressure, mean arterial blood pressure, 
cumulative and hourly urinary output, glycemia, clinical 
pulmonary infection score (CPIS), temperature, Rich-
mond Agitation Sedation Scale (RASS) score, respira-
tory rate, SpO2 and ventilatory parameters (FiO2, PEEP, 
minute-volume and tidal volume). Most parameters 
were measured in intervals of one minute. We arbitrarily 

chose to include data from 24 h prior to the SBT up until 
the start of the SBT. No additional measurements were 
required.

Data processing
We dealt with missing values through multiple imputa-
tion using the K-nearest neighbors (KNN) method [37, 
38]. To overcome the problem of the unbalanced dataset 
the synthetic minority oversampling technique (SMOTE) 
was used (based on the generation of virtual individu-
als to increase the representation of the minority class) 
[39–41].

To input the time series data into the ML models, we 
used the feature extraction based on scalable hypothesis 
tests (FRESH) method. Given the large number of vari-
ables (and therefore dimensions) being considered, we 
applied two types of dimensional reduction to reduce the 
training time of the models. A variable is considered rel-
evant if it is not independent of the target to be predicted 
(based on a statistical test appropriate for that variable 
and a p-value < 0.05). We then took all the relevant fea-
tures with p-values < 0.05 and referred to this as the “light 
dimensional reduction”. We tested another dimensional 
reduction, limiting the data to the first 20 relevant vari-
ables (smallest p-values, including both continuous and 
discrete variables), and refer to this as the “heavy dimen-
sional reduction”. See Supplementary Methods for more 
details.

A conceptual diagram of the data processing is shown 
in Fig. 1.

Training of machine learning models and statistical 
analysis
We used several ML models: Logistic Regression (LR), 
Random Forest Classifier (RFC), Support Vector Clas-
sifier (SVC), K-nearest neighbors (KNN), Gradient 
Boosting Machine models (eXtremely Gradient Boost-
ing or XGBoost and Light Gradient Boosted Machine 
or LGBM), and a stacking classifier (ensemble model, 
combining Random Forest Classifier and Support Vector 
Classifier). The hyperparameters were tuned using cross-
validation and grid search optimization. For training, we 
split the development cohort into 80% training and 20% 
test parts. A stratified split was also performed (main-
taining the same success/failure ratio as in the overall 
dataset).

For the descriptive statistics of the population, con-
tinuous variables were expressed as median [interquartile 
range] or median ± standard deviation depending on the 
distribution, and categorical variables were expressed as 
number (percentage). We used a Shapiro–Wilk test to 
determine the normality of the continuous variables. We 
used either the χ2 test or Fisher’s exact test to compare 
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categorical variables, and the Mann–Whitney U test to 
compare continuous variables. A p-value < 0.05 was con-
sidered to indicate a significant difference.

The following performance metrics were used 
to assess the ML models: area under the receiver 

operating curve (AUROC), area under the precision-
recall curve (AUCPR), F1-score, sensitivity, specificity, 
positive predictive value (precision), negative predic-
tive value and accuracy. We defined the minimum sig-
nificance level for AUROC and AUCPR as 0.8. The 

Fig. 1  Conceptual workflow of the data preprocessing. Time series are biosignals. The dotted arrow indicates a feedback loop. FRESH FeatuRe 
Extraction based on Scalable Hypothesis tests, KNN K-nearest neighbors, SMOTE synthetic minority oversampling technique, SVC Support Vector 
Classifier
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confidence intervals were obtained with a bootstrap 
method (n-repetitions = 1000) and the AUCs were tested 
against random chance using a permutation method 
(n-repetitions = 1000).

The models were further explored using the Shapley 
additive explanations (SHAP) value, to determine the 
importance of different features (variables) in the model 
output [42].

To evaluate the influence of sample size, we tested the 
variation in AUROC and AUCPR values with different 
numbers of observations (25, 50, 75, 100, 125, 150, 175, 
200 and total cohort).

Development environment
All the development work was conducted using Python 
version 3.9.16, along with the following libraries and their 
respective versions: NumPy 1.23.5, pandas 1.5.3, matplot-
lib 3.7.1, seaborn 3.7.1, missingno 0.5.2, imblearn 0.10.1, 
joblib 1.1.1, tableone 0.7.12, TSfresh 0.20.0, Sklearn ver-
sion 1.1.3, LightGBM 2.2.3, XGBoost 1.5.0, TensorFlow 
2.12.0, SHAP 0.41.0.

Results
Patient characteristics
Overall, 232 patients were included in the develop-
ment cohort used to assess the ML models: 149 patients 
(64.2%) succeeded in the SBT and 83 (35.8%) failed, and 
a further 71 patients were excluded due to a lack of data 
(55 without respiratory data and 16 without hemody-
namic data); see Fig. 2.

There was no significant difference between the two 
groups in terms of severity at admission (SAPSII: 54.2 vs. 
54.7, p = 0.843, SOFA score: 8.5 vs. 9, p = 0.675). Patients 
in the success group were younger (63 years vs. 66 years, 
p = 0.032) and were more likely to be admitted for neu-
rological reasons (29.5% vs. 13.3%, p = 0.008); see Table 1. 
Those who failed SBT tended to include a higher per-
centage of patients intubated mainly for respiratory rea-
sons (74.7% vs. 54.4%, p = 0.004) and a lower percentage 
of neurological intubations (13.3% vs. 34.9%, p = 0.001). 
There were also more PEEP-ZEEP tests in the success 
group (62.4% vs. 42.2%, p = 0.003). There were more 
instances of VAP (71.1% vs. 19.5%, p < 0.001), longer hos-
pital stays (13.9  days vs. 8.6  days, p < 0.001) and longer 
durations of volume-controlled ventilation (3  days vs. 
2 days, p < 0.001) in the failure group compared with the 
success group. The delay from intubation to the first SBT 
was shorter for patients who passed their SBT (4  days 
vs. 6  days, p = 0.002). Patient characteristics and out-
comes are summarized in Table 1.

Accuracy and predictive power of the models
The results of the AUROC curves and AUCPR obtained 
for the different algorithms after applying the different 
pre-processing methods (imputation, SMOTE and light 
dimensional reduction) are shown in Figs.  3 and 4 and 
Table  2. These results represent the performance of the 
ML models on the test dataset after training on the train-
ing dataset. In terms of AUROC, the best predictions 
were obtained with the SVC model: 0.922 (0.871–0.940, 
p < 0.001), and followed by the LGBM: 0.871 (0.812–
0.922, p < 0.001). The worst predictions were obtained 
with the Logistic Regression model with an AUROC of 
0.77 (0.756–0.834, p < 0.001).

As shown in Fig. 4 and Table 2, the best AUCPR was 
also obtained by the SVC model: 0.963 (0.936–0.970, 
p = 0.001). The combination of RFC and SVC model 
in the Stack Model produced worse results than the 
SVC model alone (AUCPR: 0.929, 95% CI 0.912–0.970, 
p = 0.001).

The models performed worse when heavy dimensional 
reduction (20 features) was used; see Table 2. In this case, 
the KNN model obtained the highest AUCPR (KNN: 
0.916, 95% CI 0.835–0.936, p = 0.001) and AUROC 
(KNN: 0.849, 95% CI 0.733–0.886, p < 0.001).

The calculation of SHAP values allowed us to deter-
mine the relative importance of different features in the 
models. In Supplementary Fig. 1, representing the 5 most 
important features, we can see that the presence of VAP 
before the SBT, fibrinogenemia at the time of SBT and 
weight gain since admission are decisive variables. The 
patients who failed the SBT were more likely to have 
VAP, and to have gained weight. The patients whose SBT 
was successful had lower fibrinogen levels than those the 
other group.

Effect of sample size
We evaluated the importance of sample size variation in 
the performance, in terms of AUROC and AUCPR; see 
Supplementary Figs. 2 and 3. There was an improvement 
in prediction for all the models up to 100 observations, 
except for Logistic Regression and KNN. After that, a 
plateau was reached where AUROCs essentially stag-
nated between 0.8 and 0.9, regardless of the increase in 
the number of observations. Support Vector Classifier 
predictions were the most stable; see Supplementary 
Fig. 2.

For the AUCPR values, the plateau was reached sooner, 
around 75 observations, see Supplementary Fig. 3. Simi-
larly, for the AUROC values, SVC predictions were the 
most stable and Logistic Regression fluctuated the most.
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Fig. 2  Study flowchart. SBT spontaneous breathing trial
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Table 1  Patient characteristics and outcomes

Characteristics SBT failure (n = 83) SBT success (n = 149) p-value

Characteristics of the patients at admission

 Age, median [Q1,Q3], (years) 66.0 [59.5,74.0] 63.0 [52.0,72.0] 0.032
 Sex

 Female, n (%) 32 (38.6) 59 (39.6) 0.987

 Male, n (%) 51 (61.4) 90 (60.4)

 SAPSII, mean (SD) 54.2 (18.6) 54.7 (18.1) 0.843

 Apache2, median [Q1,Q3] 22.0 [16.0,28.5] 24.0 [18.0,30.0] 0.454

 SOFA score, median [Q1,Q3] 8.5 [6.0,11.8] 9.0 [6.0,11.0] 0.675

 BMI, median [Q1,Q3] 25.8 [22.8,29.3] 26.4 [22.9,29.8] 0.358

 Comorbidities

 Immunosuppression, n (%) 14 (16.9) 30 (20.1) 0.664

 Neurodegenerative disease, n (%) 7 (8.4) 14 (9.4) 0.995

 Chronic hepatic disease, n (%) 12 (14.5) 22 (14.8) 1.000

 Chronic kidney disease, n (%) 8 (9.6) 5 (3.4) 0.071

 COPD, n (%) 19 (22.9) 23 (15.4) 0.217

 Obstructive sleep apnea, n (%) 7 (8.4) 7 (4.7) 0.391

 Arterial hypertension, n (%) 30 (36.1) 53 (35.6) 1.000

 Diabetes mellitus, n (%) 20 (24.1) 34 (22.8) 0.953

 Ischemic cardiopathy, n (%) 13 (15.7) 24 (16.1) 1.000

 Dilated cardiopathy, n (%) 4 (4.8) 0.016
 Hypertrophic cardiopathy, n (%) 2 (2.4) 3 (2.0) 1.000

 Obstructive cardiopathy, n (%) 1(0.4) 1 (0.7) 1.000

 Atrial fibrillation, n (%) 8 (9.6) 19 (12.8) 0.620

 Valvulopathy, n (%) 4(1.7) 4 (2.7) 0.300

Main reason for ICU admission*

 Respiratory admission, n (%) 46 (55.4) 68 (45.6) 0.196

 COVID19 admission, n (%) 24 (28.9) 44 (29.5) 1.000

 Neurologic admission, n (%) 11 (13.3) 44 (29.5) 0.008
 Cardiac Arrest admission, n (%) 6 (7.2) 12 (8.1) 1.000

 Surgical admission, n (%) 1 (1.2) 1 (0.7) 1.000

 Multivisceral failure admission, n (%) 5 (6.0) 6 (4.0) 0.529

 Shock admission, n (%) 12 (14.5) 12 (8.1) 0.190

Main reason for intubation*

 Respiratory, n (%) 62 (74.7) 81 (54.4) 0.004
 Neurological, n (%) 11 (13.3) 52 (34.9) 0.001
 Surgical, n (%) 5 (6.0) 4 (2.7) 0.288

 Cardiac arrest, n (%) 6 (7.2) 13 (8.7) 0.882

Characteristics of the SBT

 PEEP-ZEEP, n (%) 35 (42.2) 93 (62.4) 0.003
 With PEEP4, n (%) 33 (39.7) 49 (32.9) 0.365

 T-tube, n (%) 15 (18.1) 7 (4.7) 0.002
Biology at the time of the SBT

 pH, median [Q1,Q3] 7.5 [7.4,7.5] 7.5 [7.4,7.5] 0.337

 PaCO2, median [Q1,Q3], mmHg 37.3 [34.0,41.8] 37.7 [34.6,41.0] 0.894

 PaO2, median [Q1,Q3], mmHg 76.2 [68.3,87.0] 78.5 [71.5,89.4] 0.184

 Bicarbonate, median [Q1,Q3], mmol/l 27.3 [25.0,30.2] 26.6 [23.5,29.3] 0.082

 Arterial lactate, median [Q1,Q3], mmol/l 1.1 [0.7,1.4] 0.9 [0.7,1.4] 0.513

 Albumin, median [Q1,Q3], g/l 23.5 [19.8,27.2] 25.1 [21.7,29.3] 0.047
 Protide, median [Q1,Q3], g/l 60.0 [56.5,64.0] 57.0 [54.0,62.0] 0.004
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Discussion
This study investigated the application of ML algorithms 
to predict the outcomes (success and failure) of the SBT 
based on a wide variety of biosignals, and irrespective 
of the cause of intubation. Preprocessing methodologies 
enabled us to include all types of data in the computa-
tions. We found that patients who did not pass the SBT 
spent a longer time on MV (measured as time between 
intubation and the first test). It is well-established that 
delaying weaning significantly increases the risk of com-
plications associated with MV, such as amyotrophy, VAP 
and delirium [8, 43]. An algorithm could be used to pre-
dict the success of the weaning test in real time. This 
study suggests it may be important to look for the pres-
ence of VAP and significant weight gain before carrying 
out the SBT, as well as examining biosignals recorded in 
the 24 h before the test, to assess its likely success. The 
use of variables derived from routinely collected data 
could therefore assist in the management of critically 
ill patients. It could potentially reduce the duration of 
invasive ventilation and associated complications, for 
example, if ML models can predict SBT success more 
reliably than current methods. Furthermore, such algo-
rithms would make a significant medical and economic 

contribution by reducing the length of hospital stays. 
Further studies will be needed to investigate these 
possibilities.

It is an original study in terms of its methodology. A 
few authors have investigated the application of ML 
models to weaning from MV, but without advanced AI 
methodologies (no handling of unbalanced datasets, no 
data cleaning, etc.) [17, 18]. Without such methodology, 
the use of biosignals in MV weaning is not well-studied 
in the literature [33, 44].

The AUROC and AUCPR of the SVC model were supe-
rior to those of the other ML algorithms (including the 
ensemble model). The use of imputation with KNN, over-
sampling with SMOTE and light dimensional reduction 
of time series data by FRESH appear to be effective tech-
niques for obtaining good predictions.

Our results show that key variables contributing to 
the model predictions are the presence of VAP before 
the SBT, fibrinogenemia at the time of SBT, weight 
gain since admission and the respiratory rate in the 
24  h prior to the SBT. The importance of respiratory 
rate seems obvious, as a high respiratory rate prior 
to the weaning test will induce patient exhaustion 
and increase the risk of failure. By highlighting these 

BMI body mass index, COPD chronic obstructive pulmonary disease, CRP C-reactive protein, LOS length of stay, MV mechanical ventilation, PCT procalcitonin, PEEP 
positive end expiratory pressure, SAPSII Simplified Acute Physiology Score, SBT spontaneous breathing trial, SOFA Sepsis-Related Organ Failure Assessment, VAP 
ventilator-associated pneumonia, VCV volume-controlled ventilation, ZEEP zero PEEP

Bold: p-value < 0.05
* Because multiple reasons are possible the total number exceeds the number of patients

Table 1  (continued)

Characteristics SBT failure (n = 83) SBT success (n = 149) p-value

 Creatinine, median [Q1,Q3], µmol/l 72.0 [48.0,111.0] 67.0 [52.0,99.0] 0.880

 Urea, median [Q1,Q3], mmol/l 10.5 [6.5,14.4] 8.7 [6.0,13.1] 0.180

 Kaliemia, median [Q1,Q3], mmol/l 3.9 [3.6,4.1] 3.9 [3.5,4.1] 0.610

 Natremia, median [Q1,Q3], mmol/l 140.0 [137.0,143.0] 140.0 [138.0,143.0] 0.529

 Hemoglobin, median [Q1,Q3], g/dl 9.8 [8.7,11.6] 10.4 [8.8,12.0] 0.333

 Hematocrit, median [Q1,Q3], l/l 0.3 [0.3,0.4] 0.3 [0.3,0.4] 0.383

 Thrombocytes, median [Q1,Q3], ×109/l 259.0 [180.0,372.0] 226.0 [152.0,322.0] 0.024
 CRP, median [Q1,Q3], mg/l 51.2 [17.9,108.4] 39.4 [8.0,102.2] 0.183

 PCT, median [Q1,Q3], ng/ml 0.3 [0.2,1.1] 0.2 [0.1,1.8] 0.242

 Fibrinogen, median [Q1,Q3], g/l 5.8 [4.0,7.1] 3.3 [2.5,5.2] < 0.001
 Leukocytes, median [Q1,Q3], ×109/l 11.8 [8.7,14.9] 11.6 [8.9,15.6] 0.917

 Lymphocytes, median [Q1,Q3], ×109/l 1.1 [0.6,1.6] 1.2 [0.7,1.6] 0.435

Outcomes

 VAP, n (%) 59 (71.1) 29 (19.5) < 0.001
 LOS, median [Q1,Q3], day 13.9 [7.9,24.3] 8.6 [5.4,12.7] < 0.001
 Deceased status, n (%) 7 (8.4) 6 (4.0) 0.232

 Extubation failure, n (%) 9 (10.8) 18 (12.1) 0.946

 Total no. of days of invasive MV, median [Q1,Q3], day 10.1 [5.8,18.9] 4.8 [2.6,9.0] < 0.001
 Delay from intubation to first SBT, median [Q1,Q3], day 6.0 [3.0,13.0] 4.0 [2.0,7.0] 0.002
 Total no. of days of VCV mode, median [Q1,Q3], day 3.0 [2.0,7.0] 2.0 [1.0,4.0] < 0.001
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variables, we can influence the success of the weaning 
test. These are variables that are directly under the con-
trol of the clinician. For example, to achieve a favora-
ble hydrosodic balance, it is possible to induce diuresis 
and reduce water intake. Preventing VAP, recognizing 
it early and treating it appropriately can have a direct 
effect on weaning success. It is also possible to act 
directly on respiratory rate, heart rate or blood pressure 
by initiating appropriate treatment, such as treating 
delirium, opioid withdrawal syndrome or hypertension 
for example.

Predicting the success of MV weaning using parame-
ters that are routinely collected may enable better care. 
However, a prospective study with more data is needed.

Strengths
A strength of this study is the inclusion of patients from 
two centers (Archet Hospital and Pasteur Hospital, Nice), 
which makes the results more generalizable.

The inclusion of patients admitted to ICU for differ-
ent etiologies is also a strength of this study. By includ-
ing patients ventilated for respiratory, neurological or for 
cardiopulmonary arrest reasons, this algorithm can be 
applied to any patient admitted to an ICU and requiring 
MV.

In comparison with other research in the field of MV 
weaning, we found a similar success/failure rate in our 
development cohort [4, 8, 17]. To reduce the bias that 
can result from such an unbalanced dataset (e.g., biased 

Fig. 3  ROC AUC curves used to assess the models. We used multiple imputation, light dimensional reduction (238 features) and SMOTE on the test 
dataset. The Stack model contains a combination of Support Vector and Random Forest Classifier. KNN K-nearest neighbors, LGBM light gradient 
boosting machine, SMOTE synthetic minority oversampling technique, SVC support vector classifier, XGBoost extreme gradient boosting
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model and poor generalization), the SMOTE technique 
was used, which augments the minority class by creat-
ing artificial observations [39–41]. SMOTE has also 
proven effective in reducing overfitting (when the pre-
dicted model corresponds too closely to the training 
dataset and fails to generalize to new data) [45, 46].

We decided to use the AUCPR as the evaluation 
metric. The AUCPR is more suitable than AUROC for 
unbalanced data sets [47–49].

We have used simple variables that do not require 
additional measurements (such as blood tests, radiol-
ogy, etc.) compared to what is done routinely. In fact, 
we have only integrated into our algorithms transfor-
mations of variables that were already available to us.

Trudzinski et  al. note that determining the risk fac-
tors for weaning failure is complicated due to the 
number of studies and their heterogeneity. They con-
clude that multidimensional scores may be more use-
ful in patient assessment [50]. Machine learning models 
provide a tool to analyze existing data in a systematic 
and consistent way and assist with its interpretation 
through multidimensional models.

The last and most important strength of this study is 
the rigorous framework development. Our data pre-
processing using the imputation, FRESH and SMOTE 
techniques, enabled us to combine discrete variables 
and time series covering a broad range of patient char-
acteristics. The resulting ML models predicted the 
success or failure of the SBT for patients with high 
accuracy. This methodology allowed us to obtain 
robust results that were superior to those of other 
studies looking at the use of ML in weaning, for exam-
ple Lin et  al. (AUROC: 0.908, 95% CI 0.864–0.943 for 
XGBOOST model) and Liu et  al. (AUROC: 0.61, 95% 
CI 0.58–0.64 for Support Vector Machine model) [17, 
18]. Compared to the recent study by Park et al., using 
ventilator data in a similar context with a multi-layer 
perceptron, our results are superior and more con-
sistent (AUCPR 0.767, 95% CI 0.434–0.983) [34]. Our 
methodology allowed us to use weak signals (a signal 
that is difficult to “hear” and understand), signals that 
have not been widely used in medicine, because they 
are complex to use and understand [27, 51]. To avoid 
the phenomenon of the ML model learning from the 

Fig. 4  AUC precision-recall curves used to assess the models. We used multiple imputation, light dimensional reduction (238 features) 
and SMOTE on the test dataset. The Stack model contains a combination of Support Vector and Random Forest Classifier. AUCPR area under curve 
precision-recall, KNN K-nearest neighbors, LGBM light gradient boosting machine, SMOTE synthetic minority oversampling technique, SVC support 
vector classifier, XGBoost extreme gradient boosting
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SBT, we excluded data recorded after the test began. In 
this way we limited overfitting on our dataset [52].

Limitations
The size of the patient sample included in this study 
is relatively small. This is due to the difficulty and time 
required to compile the various biosignals of interest for 
a sufficient number of patients. Patients admitted for 
very short stays with little or no respiratory failure (e.g., 
patients admitted for voluntary drug intoxication) did 
not require intubation or extensive monitoring. However, 

this sample size was sufficient to draw conclusions using 
ML models. A larger number (several thousand observa-
tions) would have been necessary to assess deep learning 
models. The number of patients was also consistent with 
the literature on similar study on different topics [24]. 
Furthermore, as shown in the supplementary analyses, 
beyond a hundred observations, the number of individu-
als appears to have little effect on the prediction accuracy.

The study was originally planned to use the data 
from around 500 patients. However, only 232 patients 
were included in the database. The main reason for this 

Table 2  Results of the different machine learning models

We used light dimensional reduction (238 features) and heavy dimensional reduction (20 features) on the test dataset

AUCPR area under curve precision-recall, AUROC area under the receiver operating curve, KNN K-nearest neighbors, LGBM light gradient boosting machine, NBC Naïve 
Bayes Classifier, PNV predictive negative value, PPV predictive positive value, SMOTE synthetic minority oversampling technique, SVC support vector classifier, XGBoost 
extreme gradient boosting

Bold: indicates the highest value in each column
* The Stack model is a combination of Support Vector and Random Forest Classifier

F1-score AUROC AUCPR Sp Se PNV PPV

p-value p-value

Light dimensional reduction (238 features) + SMOTE

 Logistic Regression 0.828 0.77  < 0.001 0.852 0.012 0.765 0.8 0.684 0.857

 95%CI (0.756–0.834) (0.821–0.904)

 Random Forest 0.82 0.806  < 0.001 0.887 0.001 0.647 0.833 0.688 0.806

 95%CI (0.747–0.9) (0.84–0.945)

 XGBoost 0.836 0.855  < 0.001 0.904 0.004 0.882 0.767 0.682 0.920

 95%CI (0.804–0.912) (0.871–0.960)

 LGBM 0.847 0.871  < 0.001 0.919 0.002 0.765 0.833 0.722 0.862

 95%CI (0.812–0.922) (0.880–0.963)

 SVC 0.806 0.922  < 0.001 0.963 0.001 0.588 0.833 0.667 0.781

 95%CI (0.871–0.940) (0.936–0.970)

 KNN 0.75 0.827  < 0.001 0.913 0.001 0.706 0.7 0.571 0.808

 95%CI (0.702–0.853) (0.815–0.925)

 Stack model* 0.820 0.839  < 0.001 0.925 0.001 0.647 0.833 0.688 0.806

 95%CI (0.826–0.937) (0.913–0.968)

Heavy dimensional reduction (20 features) + SMOTE

 Logistic Regression 0.828 0.782  < 0.001 0.892 0.003 0.765 0.8 0.684 0.857

 95%CI (0.761–0.845) (0.830–0.912)

 Random Forest 0.781 0.728  < 0.001 0.829 0.017 0.529 0.867 0.692 0.765

 95%CI (0.646–0.841) (0.742–0.916)

 XGBoost 0.787 0.773 0.001 0.862 0.005 0.588 0.8 0.625 0.774

 95%CI (0.704–0.876) (0.783–0.936)

 LGBM 0.767 0.714 0.007 0.813 0.022 0.588 0.767 0.588 0.767

 95%CI (0.641–0.812) (0.716–0.897)

 SVC 0.844 0.796  < 0.001 0.868 0.007 0.588 0.9 0.769 0.794

 95%CI (0.678–0.849) (0.720–0.923)

 KNN 0.807 0.849  < 0.001 0.916 0.001 0.765 0.767 0.65 0.852

 95%CI (0.733–0.886) (0.835–0.936)

 Stack model* 0.852 0.825  < 0.001 0.885 0.003 0.706 0.867 0.750 0.839

 95%CI (0.706–0.857) (0.790–0.930)
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difference in sample size is that records prior to January 
2020 had high levels of missing data. It was decided not 
to include records before this date to avoid impacting 
the training of the models and consequently the results 
obtained. To address the issue of the reduced sample size, 
an additional analysis was performed (see Supplementary 
Figs. 2 and 3) which showed that there was no significant 
improvement in results with an increased sample size 
beyond 100 patients.

The generation of a large number of explanatory vari-
ables can make the interpretation of the generated model 
difficult. This is why we opted to use the FRESH method 
to reduce the dimensionality of the temporal variables 
[53, 54].

The retrospective nature of the study can also be con-
sidered a limitation. However, this limitation is due to the 
design of the study, which specifically aimed at the devel-
opment of the ML predictive algorithm. A second valida-
tion study will be performed using an external database 
to support the results of our analysis.

Future work
A future prospective, multicenter study is planned that 
will evaluate the application of the ML algorithm in real 
time. In addition, future work will focus on determin-
ing the optimal time period for measuring the biosignals 
prior to the SBT (e.g., 48 h, 12 h, 2 h) to obtain the most 
accurate predictions of success. The implementation of 
these models into internal electronic systems will be the 
final goal. Using variables derived from commonly col-
lected data should make this easier. In fact, the models 
only use measures that are already available and do not 
require any additional invasive intervention. We can 
envision a future implementation in our electronic clini-
cal system or ventilator system for example. In the long 
term, the use of an optimized algorithm could potentially 
decrease LOS and MV durations by identifying the opti-
mal timing for weaning from MV.

Conclusion
This original study, in terms of its methodology and 
research topic, showed an application of different ML 
models to predict SBT success for ICU patients, regard-
less of etiology. We demonstrated that the combined 
use of discrete variables (e.g., VAP, weight gain, etc.) 
and continuous variables (biosignals), along with data 
preprocessing techniques (imputation by KNN, dimen-
sional reduction of the temporal variables by FRESH, 
and oversampling by SMOTE), produced better pre-
dictions than previous results in the literature. Fur-
thermore, this work enabled us to use existing data and 
highlighted the potential usefulness of weak signals in 

intensive care. However, further studies on large exter-
nal databases will be necessary to validate these results.
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