
SmartTools: a Development Environment Generator based on XML
Technologies

�

Isabelle Attali, Carine Courbis,
Pascal Degenne, Alexandre Fau,

Joël Fillon, Didier Parigot
INRIA Sophia - OASIS Project
2004, Route des Lucioles BP 93
06902 Sophia-Antipolis, France

+33 4 92 38 75 56
First.Last@sophia.inria.fr

Claude Pasquier
Bull CP8

68, Route de Versailles
78430 Louveciennes, France

+33 4 92 38 71 64
Claude.Pasquier@sophia.inria.fr

Claudio Sacerdoti Coen
Department of Computer Science

University of Bologna
Mura Anteo Zamboni, 7

40127 Bologna, Italy
sacerdot@cs.unibo.it

ABSTRACT
SmartTools is a development environment generator that
provides a structure editor and semantic tools as main fea-
tures. SmartTools is easy to use, thanks to its graphical user
interface. Being based on Java and XML technologies of-
fers all the features of SmartTools to any defined language.
The main goal of this tool is to provide help and support
for designing software development environments for pro-
gramming languages as well as domain-specific languages
defined with XML technologies.

Keywords
Java, DOM, XML, BML, XSLT, Program transformation,
Software engineering, Interactive environment.

1 INTRODUCTION
Producing high-quality software has become a major con-
cern in industry. There is a long history of research about
providing help and support during the development process
[7, 8, 10, 15, 16, 17, 22]. It is imperative that the research
community creates technologies to enhance the quality of
software development and increase the developers produc-
tivity. These goals are addressed by the SmartTools frame-
work and research [6]. It is composed of a set of generic
and interactive software components organized into a mod-
ular architecture. With this basic environment, designers of
languages are able to easily define and implement a set of
specific applications for their languages using generic tools.
The SmartTools system is completely written with the Java
programming language and uses XML technologies [24] ex-
tensively.

�
This project is supported in part by Dyade, the Bull-Inria Research Joint

Venture, and Microsoft Research

2 ABSTRACT SYNTAX AND SEMANTIC MANIPU-
LATION

SmartTools internally uses the Abstract Syntax Tree (AST)
definitions of the manipulated languages. It can accept Doc-
ument Type Definitions (DTDs) as AST definitions to define
languages. When a DTD is imported, it automatically pro-
duces a set of Java classes that extend a DOM implementa-
tion for each operator. It offers a structure editing environ-
ment for the language defined by this DTD for free. During
editing, the system guarantees that XML documents remain
valid and well-formed. When additional information is pro-
vided in DTDs, it can automatically generate a set of pretty-
printers and a parser to offer a user-friendly syntax for lan-
guages. In the future, SmartTools will accept XML Schemas,
Relax and TREK.

When an XML file is parsed, SmartTools constructs a
strongly typed structure by mapping XML elements to in-
stances of classes generated during DTD importation ([25,
13] use the same technique). Such a typed structure is nec-
essary to apply the visitor design pattern technique [20, 21]
(a well-known oriented-object programming technique) for
tree manipulations. To ease the development of new visitors
for any specific purpose, SmartTools generates a default visi-
tor class. One can extend it by inheritance and override some
of the visit methods to perform a new analysis on DOM trees
like typechecking, evaluation or compilation [6]. Addition-
ally, it is possible to dynamically customize the behavior of
visitors by using visitor-specific aspects [4] e.g., an aspect
is used to implement a generic graphical debug mode. We
have also introduced a generic visitor concept to be able to
factorize identical behaviors applicable to all the nodes of a
tree.

A challenging test-bench for this technique has been the ap-
plication of DTDs developed by the HELM [5] project to
describe a high-level logic used by the Coq proof assistant
[14] to encode mathematical theories. A whole system of ten
mutually recursive visitors has been easily implemented and
applied to 27Mb of mutually linked XML files to reconstruct
a valid input for Coq. The proposed technique for seman-
tic manipulations proved to be easy to manage, efficient and
scalable.

Finally, typed DOM structures and visitor patterns let de-



Figure 1: SmartTools environment showing different views of the same tree structure

signers easily create languages and their associated semantic
tools. Thus, SmartTools is bootstrapped by using itself to
design all its internal languages (our abstract syntax tree de-
finition, pretty-printer definition, etc.) and their tools (com-
piler, typechecker, etc.). Approximately 40% of SmartTools
source code is generated by SmartTools itself.

3 INTERACTIVE ENVIRONMENT
SmartTools includes a graphical interface which makes ex-
tensive use of XML technologies. It has multi-viewing ca-
pabilities (see Figure 1) and guarantees the consistency be-
tween the tree structure and its different views during the
structure editing. Each view is built by the assembly of Jav-
aBeans components that know how to calculate (thanks to
a few specific constraints) their relative position in the tree
structure. With this concept, a user can quickly and eas-
ily design new views by choosing different JavaBeans or
by changing the way components are gathered together. In
our system, representation of JavaBeans is expressed in an
XML document using the Bean Markup Language (BML)
[12] syntax. The XSL Transformation language (XSLT) [2]
is used to express the transformation between the tree struc-
ture and its graphical views. Only a subset of XSLT instruc-
tions is used in order to make possible incremental updates
of views.

A higher-level transformation language called Xpp has been
defined on top of XSLT. Its features are very similar to those

of XSLT but it is much more concise, more readable and
can perform transformations only on subtrees for incremen-
tal purposes. An Xpp specification is currently converted in
XSLT. We plan to propose other implementations based on
rewriting systems like TOM [19].

Xpp consists of a set of rule definitions which match pat-
terns with explicit variables for subtrees. These variables are
used in the code part for recursive calls. This constraint of-
fers the capability of preserving incremental changes of the
transformation. With Xpp, it is possible to define functions
that avoid writing redundant code. It also provides an impor-
tation mechanism of others Xpp documents to reuse previ-
ously defined transformations.

4 THE ARCHITECTURE OF THE SMARTTOOLS
FRAMEWORK

SmartTools is made of several independent software com-
ponents that communicate with each other through an asyn-
chronous messaging system. We designed a message con-
troller in charge of managing the flow of messages and de-
livering them to their destinations. So far, information car-
ried in messages is serialized in XML format. It is planned
to move a step forward and adapt the system to respect the
W3C Simple Object Access Protocol (SOAP) [3] specifica-
tions in a close future. The design of this messaging sys-
tem has proven to be simple, efficient, and easy to maintain.
Another benefit is that SmartTools components can be used



and integrated by other applications without the need of the
whole system. Moreover with this architecture, it is very
easy to obtain standalone version of tools for their external
uses.

5 CONCLUSION
From the abstract syntax definition of programming (e.g.
Java) or domain-specific languages, it is possible to easily
generate an interactive environment with SmartTools. This
latter automatically offers a well-known visitor pattern tech-
nique to specify semantic analysis on DOM tree structures.
Its graphical part is mainly based on free existing implemen-
tations of standards (XSLT, BML). We have chosen to use
non-proprietary APIs in the concern to be open and take ad-
vantage of future or external developments. Thus, we can fo-
cus on semantics tools [23] (visitor technics, aspect-oriented
programming).

There are already some examples of easy and successful inte-
gration of research tools [18, 9, 11], and technology transfer
in industrial environment [1]. Additionally, we hope to ben-
efit from the large fields of applications that appear through
XML technologies.

ACKNOWLEDGEMENTS
We have much benefited from discussions with Colas Na-
haboo, Thierry Kormann and Stéphane Hillion about XML
technologies.

REFERENCES

[1] Bull CP8, Odyssey Lab.
http://www.cp8.bull.net/odyssey/javaa.htm.

[2] W3C recommendations, XSL Transformation, version
1.0. http://www.w3.org/TR/xslt, November 1999.

[3] W3C note, simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, May 2000.

[4] Aspect-Oriented Programming.
http://www.parc.xerox.com/csl/projects/aop/.

[5] The Hypertextual Electronic Library of Mathematics.
http://www.cs.unibo.it/˜ asperti/HELM/.

[6] I. Attali, C. Courbis, P. Degenne, A. Fau, and
D. Parigot. SmartTools: a Generator of Interactive En-
vironments Tools. In Compiler Construction CC’2001,
volume 2027 of Lecture Notes in Computer Science,
Genova, Italy, April 2001. Springer-Verlag. Tool
demonstration.

[7] L. Augusteijn. The Elegant Compiler Generation Sys-
tem. In P. Deransart and M. Jourdan, editors, Attribute
Grammars and their Applications (WAGA), volume
461 of Lecture Notes in Computer Science, pages 238–
254. Springer-Verlag, New York–Heidelberg–Berlin,
Sept. 1990. Paris.

[8] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: A Tool
Suite for Building GenVoca Generators. In 5th Interna-
tional Conference in Software Reuse, June 1998.

[9] F. Besson, T. Jensen, and J.-P. Talpin. Polyhedral
Analysis for Synchronous Languages. In A. Cortesi
and G. Filé, editors, Static Analysis, volume 1694
of Lecture Notes in Computer Science, pages 51–68.
Springer, 1999.

[10] P. Borras, D. Clément, T. Despeyroux, J. Incerpi,
G. Kahn, B. Lang, and V. Pascual. CENTAUR: the Sys-
tem. SIGSOFT Software Eng. Notes, 13(5):14–24, Nov.
1988.

[11] R. Forax, E. Duris, and G. Roussel. Java Multi-
Method Framework. In International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS’00), Nov. 2000.

[12] IBM. Bean Markup Language.
http://www.alphaworks.ibm.com/formula/bml.

[13] IBM. XML Editor Maker.
http://www.alphaworks.ibm.com/tech/xmleditormaker.

[14] INRIA. The Coq proof assistant. http://coq.inria.fr/.

[15] M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le
Bellec. Design, implementation and evaluation of
the FNC-2 attribute grammar system. In Conf. on
Programming Languages Design and Implementation,
pages 209–222, White Plains, NY, June 1990. Pub-
lished as ACM SIGPLAN Notices, 25(6).

[16] U. Kastens, P. Pfahler, and M. Jung. The Eli system. In
K. Koskimies, editor, Compiler Construction CC’98,
volume 1383 of Lect. Notes in Comp. Sci., portugal,
Apr. 1998. Springer-Verlag. Tool demonstration.

[17] P. Klint. A Meta-Environment for Generating Program-
ming environments. ACM Transactions on Software
Engineering Methodology, 2(2):176–201, 1993.

[18] M. Mernik, N. Korbar, and V. Zumer. LISA: A Tool for
Automatic Language Implementation. ACM SIGPLAN
Notices, 30(4):71–79, Apr. 1995.

[19] P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern-
Matching Compiler. In Workshop on Language De-
scriptions, Tools and Applications (LDTA), volume 42-
2. Electronic Notes in Theoretical Computer Science,
April 2001.

[20] J. Palsberg and C. B. Jay. The Essence of the Visitor
Pattern. In COMPSAC’98, 22nd Annual International
Computer Software and Applications Conference, Vi-
enna, Austria, Aug. 1998.



[21] J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A
New Approach to Compiling Adaptive Programs. In
H. R. Nielson, editor, European Symposium on Pro-
gramming, pages 280–295, Linkoping, Sweden, 1996.
Springer Verlag.

[22] T. Reps and T. Teitelbaum. The Synthesizer Gener-
ator. In ACM SIGSOFT/SIGPLAN Symp. on Practi-
cal Software Development Environments, pages 42–48.
ACM press, Pittsburgh, PA, Apr. 1984. Joint issue with
Software Eng. Notes 9, 3.Published as ACM SIGPLAN
Notices, volume 19, number 5.

[23] M. van den Brand, M. Mernik, and D. Parigot, editors.
LDTA’01 First Workshop on Language Descriptions,
Tools and Applications, Electronic Notes in Theoretical
Computer Science. ETAPS’2001, Elsevier, April 2001.
Genova, Italy.

[24] W3C. eXtensible Markup Language (XML).
http://www.w3.org/XML/.

[25] B. Wait. Using XML in Oracle Database Applications.
"http://technet.oracle.com/tech/xml/info/index2.htm?
Info&htdocs/otnwp/about_oracle_xml_products.htm",
November 1999.


