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2 Laboratoire de Biologie Virtuelle (CNRS UMR-6543), Université de Nie � Sophia-Antipolis,Centre de Biohimie, Par Valrose, 06108 Nie edex 2, Frane;{hristen,laude.pasquier}�unie.frAbstrat. Using several analyse tehniques for the hierarhial lustering of aSAGE expression dataset of 822 tags from 74 tissue samples (normal and aner)we show that leaning the dataset (tags and experiments) is ritial and thatattribution of a tag to a gene is not easy. Comparison of aners from varioustissues is a di�ult task as tissue samples luster aording to tissue origin andnot as aner or normal.1 IntrodutionThe SAGE method is based on the sequening of onatemers of short (14 basepairs;reently 17 bp) sequene tags that originate from the 3'-nearest utting site of a restritionenzyme) to estimate transripts abundane [VZVK95℄, to estimate the expression levelof eukaryoti transripts without prior knowledge of their sequenes and is more sensitivethan the EST method [SZL+04℄, but requires knowledge of the omplete genome. Theadvantage of the SAGE method is to perform a random sampling of transripts in apartiular tissue, with little sequening e�ort.The dataset proposed for analysis omprises several di�ulties:1. PCR and sequening may produe a number of errors. A single error may lead to nonreognition of a transript or wrong attribution. Some tags may be present in morethan one gene. Finally, sine restrition enzymes may not ut with 100% e�ieny,some tags may be wrong.2. Tissue samples originate from two di�erent soures (i.e. bulk or ell line) that mayin�uene gene expression. Canerous tissue are usually provided after surgery, a �an-er� sample may ontain more healthy tissue than aner, leading to a �wrong� iden-ti�ation.3. Analyzes using DNA hips onluded that aner ells are more alike normal ellsof the same tissue than aner ells from a di�erent tissue: there are many moretissue-spei� genes than genes involved in aners [RSE+00,SRW+00℄. Thus, tryingto lassify in two lasses, normal versus aner, in order to identify spei� tagsan be di�ult. Also, aners may have di�erent origins (deregulation of onogenesversus breakdowns of hromosomes for example) searhing for two lasses only maybe problemati.4. Interpretations. Even after removal of tags that do not show any signi�ant hangeamong samples, many tags remain to be lassi�ed. One may then use tools suh asTHEA [PGJC04℄ to automatially annotate lusters or nodes from a lassi�ation treewith statistially signi�ant information extrated from for example GeneOntology,if eah tag is linked to a gene.



Tissue Caner bulk Caner ell line Normal bulk Normal ell line TotalBrain 8 7 5 1 21Breast 6 3 2 0 11Colon 2 4 2 0 8Kidney 0 2 0 0 2Ovary 3 4 0 2 9Panreas 0 3 2 2 7Prostate 3 6 2 0 11Peritoneum 0 0 1 0 1Skin 1 0 0 1 2Vessel 0 0 0 2 2Total 23 29 14 8 74Table 1. Repartition of onditions by ell state and soure: aner (C), normal (N), bulk (Bu),ell line (Ce).The main goal of our analysis was to investigate the in�uene of leaning the dataset. Wepropose to validate removal of spurious tags or experiments and therefore inrease thesignal. In an exploratory analysis we used the small dataset. This paper fouses on thefollowing steps: i) Pruning of non-signi�ant tags; ii) data normalization; iii) seletion ofdi�erentially expressed genes; iv) deletion of outlier biologial onditions; v) lassi�ationof biologial onditions.2 Tags seletionTags are often annotated based on the SAGE Genie priniples [BOG+02℄ and linked toa series of expression data (often EST sequenes), a step that is di�ult to automate. Itis often di�ult to understand and appreiate the methods used for tag attribution, wetherefore developed spei� tools. First, every human ENST sequene was downloadedfrom Ensembl. Tags present in transripts of a single gene were labelled as good (436)attributed orresponding ENSG numbers3. Tags present in transripts originating fromseveral genes were labeled as bad (219) and removed from further analysis.Next, all EMBL human sequenes (inluding ESTs) were downloaded to searh nonattributed tags (167). Every sequene reognized was blasted for ENSG attribution.This step led to a further 80 tags attributed to a ENSG number. Reasons for tag nonattribution are likely to be: i) loation in a region not yet identi�ed as a gene; ii) loationin the mitohondrial genome (very few protein oding genes), whih was not taken intoaount; iii) tag resulting from the partial digestion of a transript, and therefore notloated in the 3-most domain.At this point we had learly less tags linked to genes than if we had used a tool suh asSAGE Genie or other tools. But the �rst tag of the list was linked to a mitohondrialsequene by SAGE Genie, while at the Global Gene Expression Group projet it mappedto Unigene Hs.476965 (G1/S transition ontrol protein-binding protein IEF-8502)4. TheSAGE Genie linked this tag to a sequene of aession number BE874599. Blast of thissequene provided a hit on the mitohondrial human genome, but at a position that wasidenti�ed as `16S ribosomal sequene'. Suh sequene has no polyA tail of any sort, anddoes not ontain a repeat of A anywhere in the sequene.3 http://www.ensembl.org/4 http://sienepark.mdanderson.org/ggeg



At this step we are rather on�dent that every data resulting from large sale analysisusing web based tools, should be ritially assessed either using two di�erent publi toolsor ad-ho sripts and databases5.3 Algorithms and methodsWe used the Signi�ane Analysis of Miroarrays (SAM)6 method to selet di�erentiallyexpressed genes. SAM omputes a statisti di for every gene i, measuring the strength ofthe relationship between gene expression and the response variable (aner bulk, anerell line, normal bulk and normal ell line). The uto� for signi�ane �Delta� was �xedat 0.21 implying a False Disovery Rate of 5%.It is ritial to take into aount ondition variations and in partiular outliers thatintrodue noise in the lassi�ation [LMV04℄. Thus, we developed a methodology for�nding outliers using Prinipal Component Analysis (PCA) and hierarhial lusteringmethods:1. Using PCA as an exploratory tool to determine the optimal number of lusters.2. Applying hierarhial lustering algorithms to identify outliers and remove them.3. Applying again PCA analysis to verify that variability level is not dereased wheneah of these onditions is removed.4. Cluster to verify that the lustering was improved.We tested 5 algorithms (K Means, Fanny, Partial Least Squares, Unweighted Pair GroupsMethod Average (UPGMA) and DIvisive ANAlysis (DIANA)) and 5 measures of distane(Eulidean, Pearson, Manhattan, Spearman and Tau) aording to 3 di�erent onsis-teny measures (average proportion of non-overlap, average distane between lustersand average distane between luster means) [DD03℄. We seleted UPGMA and DIANAalgorithms and Pearson, Eulidean and Spearman distanes that are the most e�ientwith this dataset.4 Experimental results4.1 Biologial ondition seletionThe 7 panreas onditions are distributed in 3 lasses: aner ell line (C1Ce, C2Ce andC3Ce), normal ell line (N1Ce and N2Ce) and normal bulk (N3Bu and N4Bu), as isshown by the �rst 3 PCA omponents that explain 98.59% of the total variane. Thehierarhial trees obtained for the di�erent distane measures are shown in �gure 1(a).Trees obtained with the UPGMA and the DIANA algorithms are similar.When using the Pearson and Eulidean distane measures, ondition PanreasC3Ce isplaed in an isolated luster, and when the Spearman measure is used it is assoiatedwith normal onditions. Removing this ondition, the �rst 3 omponents explain 99.03%of the total variane and the result of lustering is shown in �gure 1(b).Using a similar proess for other tissues, the 16 outlier onditions obtained are listed intable 2. These results on�rm the natural division of onditions in three lasses orre-sponding to the �rst 3 omponents of PCA analysis. Furthermore, in all experiments wean see that the variane explained by the �rst 3 omponents is always improved, up to4.31% for Ovary onditions, when outlier onditions are removed.5 http://www.nbi.nlm.nih.gov/6 http://otl.stanford.edu/industry/resoures/sam.html



(a) All onditions (b) Without outliersFig. 1. Hierarhial lustering of the panreas onditions.Organ/Tissue PCA Outliers PCA without Outliers(�rst 3 omponents) (�rst 3 omponents)Brain 98.46 % {N4Ce,C1Bu,C14Bu, C5Bu, C9Ce} 99.02 %Breast 95.57 % {C6Bu} 97.38%Colon 98.56 % {} 98.56 %Ovary 93.60 % {N1Ce, N2Ce, C4Ce, C6Bu} 97.91 %Prostate 98.02 % {N1Bu,C7Bu,C9Bu, C8Ce, C1Ce} 98.70 %Panreas 98.59 % {C3Ce} 99.03 %Table 2. PCA analysis of onditions by tissues.For eah tissue, we systematially observe three lasses: aner, bulk and ell line, withbulk and ell line learly separated (see �gure 1(b)). This observation therefore on�rmsprevious analyzes that showed ell soure to be of ruial in�uene on gene expression.4.2 Hierarhial lustering of biologial onditionsWe applied PCA analysis and found that the �rst 6 omponents explain 98.22% ofthe variane orresponding to the 6 tissue lusters. Comparing these results with PCAanalysis on the initial dataset showed that gene and ondition seletions have eliminateddata noise.Then, we applied the UPGMA and DIANA algorithms to the leaned dataset and thetree obtained by onsensus for both algorithms, and for the Pearson and the Spearmandistanes, is shown in �gure 2. For the Eulidean distane, the distribution is similar butbranhes to the leaves are longer.Comparing lustering trees obtained with the initial dataset (not shown) and �gure 2learly showed that the seletion proess improved data quality sine length of terminalbranhes were onsiderably redued. We an observe a �rst degree lassi�ation by tissuethat is aurate for Panreas, Brain, Breast, Colon and Prostate tissues, but mixes Ovarytissue onditions with other tissue onditions. We an also see a lear seond degreelassi�ation, among onditions of the same tissue, by ell soure: bulk and ell line.Among Panreas, Breast, Brain and Colon ondition lusters, we an observe a thirddegree lassi�ation by state: aner and normal.In onlusion, lustering learly separates ell soures, orroborating previous results onSAGE and DNA hips data [NSS01,RSE+00℄. We an onlude that there are importantdi�erenes between bulk and ell line onditions that should not be ignored. We believethat when onduting studies for �nding �interesting gene aner knowledge� involvingmultiple tissues SAGE libraries, the study must be �rst oriented toward a deompositionof the onditions by tissues and then by ell soures to �nally fous the analysis on ellstates.



Fig. 2. Hierarhial lustering of onditions.Eventually, we applied the C5.0 unsupervised lassi�ation method to produe lassi�-ation rules of biologial onditions by tissue, ell state and ell type. Three di�erentlass attributes haraterizing eah ondition were reated: tissue type (Panreas, Ovary,Brain, Prostate and Breast), ell soure (bulk or ell line) and ell state (aner andnormal). Boosting and ross validation options were ativated. The numbers of ruleswith maximal auray generated for eah lass deomposition of onditions are shownin table 3. Class Number of rules Max aurayBulk 5 100%Cell line 5 100%Caner 1 80%Normal 3 80%All 6 tissues types 1 60%Table 3. Rules by lass and their maximal auray.Using the ell soure lassi�ation, 5 exats rules, i.e. with perfet auray, were gener-ated. For the ell state lassi�ation, only 1 and 3 rules respetively, all with with only80% of auray, were generated. Considering tissue lassi�ation, only 1 rule with 60%auray was generated. This result is logial sine there are 6 di�erent tissues, thus dis-turbing the lassi�ation, and ells from di�erent tissues but originating from ell linestend to beome more similar from the tag expression levels viewpoint. These results on-�rm that in the small leaned dataset, there is an intrinsi division of onditions by ellsoure that is more natural than by ell state.5 ConlusionMost SAGE studies made use tags of 14 bp. However, a reent study showed the learadvantage of using a tag of 15 bp [DBB+05℄. Even longer tags will be better. Reently, theSAGE protool was enhaned with a new tagging enzyme (MmeI), whih produes 21-22bases tags [SSR+02℄, allowing diret mapping to the transripts [VC04℄. When numeroustags are available removing tags present only one, that may result from errors, is possible.Sequene errors have little e�et on the quanti�ation of moderately expressed genes butnot for rare transripts. About 6.7% of Long SAGE ditags will have aquired mutationsprior to ligation, loning and sequening [VC04℄, arguing for a robust tag attribution toa transript.Only reliably annotated tags an be inluded in the �nal analysis [SSL+04℄. Annotationof SAGE tags to genes and their orresponding Unigene luster numbers revealed that onaverage only 30% of all tags (inluding less abundant tags) ould be reliably annotatedbased on the SAGE Genie priniples [BOG+02℄. Annotation improved to about 70%
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