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t. Using several analyse te
hniques for the hierar
hi
al 
lustering of aSAGE expression dataset of 822 tags from 74 tissue samples (normal and 
an
er)we show that 
leaning the dataset (tags and experiments) is 
riti
al and thatattribution of a tag to a gene is not easy. Comparison of 
an
ers from varioustissues is a di�
ult task as tissue samples 
luster a

ording to tissue origin andnot as 
an
er or normal.1 Introdu
tionThe SAGE method is based on the sequen
ing of 
on
atemers of short (14 basepairs;re
ently 17 bp) sequen
e tags that originate from the 3'-nearest 
utting site of a restri
tionenzyme) to estimate trans
ripts abundan
e [VZVK95℄, to estimate the expression levelof eukaryoti
 trans
ripts without prior knowledge of their sequen
es and is more sensitivethan the EST method [SZL+04℄, but requires knowledge of the 
omplete genome. Theadvantage of the SAGE method is to perform a random sampling of trans
ripts in aparti
ular tissue, with little sequen
ing e�ort.The dataset proposed for analysis 
omprises several di�
ulties:1. PCR and sequen
ing may produ
e a number of errors. A single error may lead to nonre
ognition of a trans
ript or wrong attribution. Some tags may be present in morethan one gene. Finally, sin
e restri
tion enzymes may not 
ut with 100% e�
ien
y,some tags may be wrong.2. Tissue samples originate from two di�erent sour
es (i.e. bulk or 
ell line) that mayin�uen
e gene expression. Can
erous tissue are usually provided after surgery, a �
an-
er� sample may 
ontain more healthy tissue than 
an
er, leading to a �wrong� iden-ti�
ation.3. Analyzes using DNA 
hips 
on
luded that 
an
er 
ells are more alike normal 
ellsof the same tissue than 
an
er 
ells from a di�erent tissue: there are many moretissue-spe
i�
 genes than genes involved in 
an
ers [RSE+00,SRW+00℄. Thus, tryingto 
lassify in two 
lasses, normal versus 
an
er, in order to identify spe
i�
 tags
an be di�
ult. Also, 
an
ers may have di�erent origins (deregulation of on
ogenesversus breakdowns of 
hromosomes for example) sear
hing for two 
lasses only maybe problemati
.4. Interpretations. Even after removal of tags that do not show any signi�
ant 
hangeamong samples, many tags remain to be 
lassi�ed. One may then use tools su
h asTHEA [PGJC04℄ to automati
ally annotate 
lusters or nodes from a 
lassi�
ation treewith statisti
ally signi�
ant information extra
ted from for example GeneOntology,if ea
h tag is linked to a gene.



Tissue Can
er bulk Can
er 
ell line Normal bulk Normal 
ell line TotalBrain 8 7 5 1 21Breast 6 3 2 0 11Colon 2 4 2 0 8Kidney 0 2 0 0 2Ovary 3 4 0 2 9Pan
reas 0 3 2 2 7Prostate 3 6 2 0 11Peritoneum 0 0 1 0 1Skin 1 0 0 1 2Vessel 0 0 0 2 2Total 23 29 14 8 74Table 1. Repartition of 
onditions by 
ell state and sour
e: 
an
er (C), normal (N), bulk (Bu),
ell line (Ce).The main goal of our analysis was to investigate the in�uen
e of 
leaning the dataset. Wepropose to validate removal of spurious tags or experiments and therefore in
rease thesignal. In an exploratory analysis we used the small dataset. This paper fo
uses on thefollowing steps: i) Pruning of non-signi�
ant tags; ii) data normalization; iii) sele
tion ofdi�erentially expressed genes; iv) deletion of outlier biologi
al 
onditions; v) 
lassi�
ationof biologi
al 
onditions.2 Tags sele
tionTags are often annotated based on the SAGE Genie prin
iples [BOG+02℄ and linked toa series of expression data (often EST sequen
es), a step that is di�
ult to automate. Itis often di�
ult to understand and appre
iate the methods used for tag attribution, wetherefore developed spe
i�
 tools. First, every human ENST sequen
e was downloadedfrom Ensembl. Tags present in trans
ripts of a single gene were labelled as good (436)attributed 
orresponding ENSG numbers3. Tags present in trans
ripts originating fromseveral genes were labeled as bad (219) and removed from further analysis.Next, all EMBL human sequen
es (in
luding ESTs) were downloaded to sear
h nonattributed tags (167). Every sequen
e re
ognized was blasted for ENSG attribution.This step led to a further 80 tags attributed to a ENSG number. Reasons for tag nonattribution are likely to be: i) lo
ation in a region not yet identi�ed as a gene; ii) lo
ationin the mito
hondrial genome (very few protein 
oding genes), whi
h was not taken intoa

ount; iii) tag resulting from the partial digestion of a trans
ript, and therefore notlo
ated in the 3-most domain.At this point we had 
learly less tags linked to genes than if we had used a tool su
h asSAGE Genie or other tools. But the �rst tag of the list was linked to a mito
hondrialsequen
e by SAGE Genie, while at the Global Gene Expression Group proje
t it mappedto Unigene Hs.476965 (G1/S transition 
ontrol protein-binding protein IEF-8502)4. TheSAGE Genie linked this tag to a sequen
e of a

ession number BE874599. Blast of thissequen
e provided a hit on the mito
hondrial human genome, but at a position that wasidenti�ed as `16S ribosomal sequen
e'. Su
h sequen
e has no polyA tail of any sort, anddoes not 
ontain a repeat of A anywhere in the sequen
e.3 http://www.ensembl.org/4 http://s
ien
epark.mdanderson.org/ggeg



At this step we are rather 
on�dent that every data resulting from large s
ale analysisusing web based tools, should be 
riti
ally assessed either using two di�erent publi
 toolsor ad-ho
 s
ripts and databases5.3 Algorithms and methodsWe used the Signi�
an
e Analysis of Mi
roarrays (SAM)6 method to sele
t di�erentiallyexpressed genes. SAM 
omputes a statisti
 di for every gene i, measuring the strength ofthe relationship between gene expression and the response variable (
an
er bulk, 
an
er
ell line, normal bulk and normal 
ell line). The 
uto� for signi�
an
e �Delta� was �xedat 0.21 implying a False Dis
overy Rate of 5%.It is 
riti
al to take into a

ount 
ondition variations and in parti
ular outliers thatintrodu
e noise in the 
lassi�
ation [LMV04℄. Thus, we developed a methodology for�nding outliers using Prin
ipal Component Analysis (PCA) and hierar
hi
al 
lusteringmethods:1. Using PCA as an exploratory tool to determine the optimal number of 
lusters.2. Applying hierar
hi
al 
lustering algorithms to identify outliers and remove them.3. Applying again PCA analysis to verify that variability level is not de
reased whenea
h of these 
onditions is removed.4. Cluster to verify that the 
lustering was improved.We tested 5 algorithms (K Means, Fanny, Partial Least Squares, Unweighted Pair GroupsMethod Average (UPGMA) and DIvisive ANAlysis (DIANA)) and 5 measures of distan
e(Eu
lidean, Pearson, Manhattan, Spearman and Tau) a

ording to 3 di�erent 
onsis-ten
y measures (average proportion of non-overlap, average distan
e between 
lustersand average distan
e between 
luster means) [DD03℄. We sele
ted UPGMA and DIANAalgorithms and Pearson, Eu
lidean and Spearman distan
es that are the most e�
ientwith this dataset.4 Experimental results4.1 Biologi
al 
ondition sele
tionThe 7 pan
reas 
onditions are distributed in 3 
lasses: 
an
er 
ell line (C1Ce, C2Ce andC3Ce), normal 
ell line (N1Ce and N2Ce) and normal bulk (N3Bu and N4Bu), as isshown by the �rst 3 PCA 
omponents that explain 98.59% of the total varian
e. Thehierar
hi
al trees obtained for the di�erent distan
e measures are shown in �gure 1(a).Trees obtained with the UPGMA and the DIANA algorithms are similar.When using the Pearson and Eu
lidean distan
e measures, 
ondition Pan
reasC3Ce ispla
ed in an isolated 
luster, and when the Spearman measure is used it is asso
iatedwith normal 
onditions. Removing this 
ondition, the �rst 3 
omponents explain 99.03%of the total varian
e and the result of 
lustering is shown in �gure 1(b).Using a similar pro
ess for other tissues, the 16 outlier 
onditions obtained are listed intable 2. These results 
on�rm the natural division of 
onditions in three 
lasses 
orre-sponding to the �rst 3 
omponents of PCA analysis. Furthermore, in all experiments we
an see that the varian
e explained by the �rst 3 
omponents is always improved, up to4.31% for Ovary 
onditions, when outlier 
onditions are removed.5 http://www.n
bi.nlm.nih.gov/6 http://otl.stanford.edu/industry/resour
es/sam.html



(a) All 
onditions (b) Without outliersFig. 1. Hierar
hi
al 
lustering of the pan
reas 
onditions.Organ/Tissue PCA Outliers PCA without Outliers(�rst 3 
omponents) (�rst 3 
omponents)Brain 98.46 % {N4Ce,C1Bu,C14Bu, C5Bu, C9Ce} 99.02 %Breast 95.57 % {C6Bu} 97.38%Colon 98.56 % {} 98.56 %Ovary 93.60 % {N1Ce, N2Ce, C4Ce, C6Bu} 97.91 %Prostate 98.02 % {N1Bu,C7Bu,C9Bu, C8Ce, C1Ce} 98.70 %Pan
reas 98.59 % {C3Ce} 99.03 %Table 2. PCA analysis of 
onditions by tissues.For ea
h tissue, we systemati
ally observe three 
lasses: 
an
er, bulk and 
ell line, withbulk and 
ell line 
learly separated (see �gure 1(b)). This observation therefore 
on�rmsprevious analyzes that showed 
ell sour
e to be of 
ru
ial in�uen
e on gene expression.4.2 Hierar
hi
al 
lustering of biologi
al 
onditionsWe applied PCA analysis and found that the �rst 6 
omponents explain 98.22% ofthe varian
e 
orresponding to the 6 tissue 
lusters. Comparing these results with PCAanalysis on the initial dataset showed that gene and 
ondition sele
tions have eliminateddata noise.Then, we applied the UPGMA and DIANA algorithms to the 
leaned dataset and thetree obtained by 
onsensus for both algorithms, and for the Pearson and the Spearmandistan
es, is shown in �gure 2. For the Eu
lidean distan
e, the distribution is similar butbran
hes to the leaves are longer.Comparing 
lustering trees obtained with the initial dataset (not shown) and �gure 2
learly showed that the sele
tion pro
ess improved data quality sin
e length of terminalbran
hes were 
onsiderably redu
ed. We 
an observe a �rst degree 
lassi�
ation by tissuethat is a

urate for Pan
reas, Brain, Breast, Colon and Prostate tissues, but mixes Ovarytissue 
onditions with other tissue 
onditions. We 
an also see a 
lear se
ond degree
lassi�
ation, among 
onditions of the same tissue, by 
ell sour
e: bulk and 
ell line.Among Pan
reas, Breast, Brain and Colon 
ondition 
lusters, we 
an observe a thirddegree 
lassi�
ation by state: 
an
er and normal.In 
on
lusion, 
lustering 
learly separates 
ell sour
es, 
orroborating previous results onSAGE and DNA 
hips data [NSS01,RSE+00℄. We 
an 
on
lude that there are importantdi�eren
es between bulk and 
ell line 
onditions that should not be ignored. We believethat when 
ondu
ting studies for �nding �interesting gene 
an
er knowledge� involvingmultiple tissues SAGE libraries, the study must be �rst oriented toward a de
ompositionof the 
onditions by tissues and then by 
ell sour
es to �nally fo
us the analysis on 
ellstates.



Fig. 2. Hierar
hi
al 
lustering of 
onditions.Eventually, we applied the C5.0 unsupervised 
lassi�
ation method to produ
e 
lassi�-
ation rules of biologi
al 
onditions by tissue, 
ell state and 
ell type. Three di�erent
lass attributes 
hara
terizing ea
h 
ondition were 
reated: tissue type (Pan
reas, Ovary,Brain, Prostate and Breast), 
ell sour
e (bulk or 
ell line) and 
ell state (
an
er andnormal). Boosting and 
ross validation options were a
tivated. The numbers of ruleswith maximal a

ura
y generated for ea
h 
lass de
omposition of 
onditions are shownin table 3. Class Number of rules Max a

ura
yBulk 5 100%Cell line 5 100%Can
er 1 80%Normal 3 80%All 6 tissues types 1 60%Table 3. Rules by 
lass and their maximal a

ura
y.Using the 
ell sour
e 
lassi�
ation, 5 exa
ts rules, i.e. with perfe
t a

ura
y, were gener-ated. For the 
ell state 
lassi�
ation, only 1 and 3 rules respe
tively, all with with only80% of a

ura
y, were generated. Considering tissue 
lassi�
ation, only 1 rule with 60%a

ura
y was generated. This result is logi
al sin
e there are 6 di�erent tissues, thus dis-turbing the 
lassi�
ation, and 
ells from di�erent tissues but originating from 
ell linestend to be
ome more similar from the tag expression levels viewpoint. These results 
on-�rm that in the small 
leaned dataset, there is an intrinsi
 division of 
onditions by 
ellsour
e that is more natural than by 
ell state.5 Con
lusionMost SAGE studies made use tags of 14 bp. However, a re
ent study showed the 
learadvantage of using a tag of 15 bp [DBB+05℄. Even longer tags will be better. Re
ently, theSAGE proto
ol was enhan
ed with a new tagging enzyme (MmeI), whi
h produ
es 21-22bases tags [SSR+02℄, allowing dire
t mapping to the trans
ripts [VC04℄. When numeroustags are available removing tags present only on
e, that may result from errors, is possible.Sequen
e errors have little e�e
t on the quanti�
ation of moderately expressed genes butnot for rare trans
ripts. About 6.7% of Long SAGE ditags will have a
quired mutationsprior to ligation, 
loning and sequen
ing [VC04℄, arguing for a robust tag attribution toa trans
ript.Only reliably annotated tags 
an be in
luded in the �nal analysis [SSL+04℄. Annotationof SAGE tags to genes and their 
orresponding Unigene 
luster numbers revealed that onaverage only 30% of all tags (in
luding less abundant tags) 
ould be reliably annotatedbased on the SAGE Genie prin
iples [BOG+02℄. Annotation improved to about 70%



for tags with intermediate to abundant expression levels. Remaining tags either 
ouldnot reliably be asso
iated with a gene (e.g. annotated to un
lustered ESTs) or were notpresent in a single gene.In 
on
lusion, algorithms used to analyze SAGE data have a strong in�uen
e on results[DBB+05℄ and using a single 
omputer program and a single sour
e of sequen
e data(annotations) would result in a weaker analysis. We have also shown in
oheren
e ofresults between di�erent publi
 web tools, and an obvious error of gene attribution forthe �rst tag at least. Removing outlier experiments also de
reases noise and in
reasesreliability of 
lustering. Finally, we saw that sear
hing for 
lassi�
ation rules identifyingnormal and 
an
erous tissues among tissues of di�erent origins is di�
ult as rules ofmaximal a

ura
y dis
riminate tissue origins. Using several datasets 
ontaining ea
h onenumerous samples from the same tissue 
ould improve the results.Referen
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