
GenMiner user guide 
 

Ricardo Martinez
1
, Nicolas Pasquier

1
 and Claude Pasquier

2
 

1
I3S Laboratory, UNSA/CNRS UMR-6070, 2000 route des Lucioles, 06903 Valbonne, France 

2
IDBC, UNSA/CNRS UMR-6543, Parc Valrose, 06108 Nice, France 

 

1. Installation 

1.1 prerequisite 

To install and run GenMiner, two mandatory pieces of software are needed: the Java Runtime 

Environment (JRE) and the The R Statistical Computing software. 

 

JAVA runtime environment 

If you don't have a java2 runtime installed on you machine, you can download and install the 

latest version (v.1.6) from this page: http://www.java.com/en/download/. All distributions 

include a graphical installer which covers all the installation procedure. 

Note: to check whether java is installed on you machine, you can visit this page 

http://www.java.com/en/download/help/testvm.xml 

 

R Statistical Computing software 

R can be found at http://www.r-project.org/. The site provides precompiled versions of R for 

Windows, Mac OS X and several Linux platforms. The installation can be made from source 

code as well. 

GenMiner uses three external R libraries that must be downloaded and installed before 

running the program. To install these libraries, launch the R Graphical interface; select the 

packages menu on top of the main windows, then install packages. On the new windows that 

appears, choose a mirror for the download, then select the three packages outliers, tseries and 

nortest. You are now ready to execute GenMiner (the R program can be closed. R will be 

automatically called by GenMiner). 

1.2 Installation of GenMiner 

The installation procedure is very simple: just uncompress the file genminer.zip into the 

location of your choice. This will create a folder called genminer with the following content: 

• genminer.jar: the GenMiner executable program, 

• genminer.bat: the windows launch file, 

• genminer: the linux launch file, 

• userguide.pdf: the GenMiner manual (this file), 

• sample_dataset.txt: a very simple dataset that can be used to test the program 

• sample_dataset_classes.txt: the frequent closed itemsets obtained by applying GenMiner 

on the sample_dataset data, 

• sample_dataset_exact.txt: the exact associations rules obtained by applying GenMiner 

on the sample_dataset data 

• sample_dataset_partial.txt: the approximate associations rules obtained by applying 

GenMiner on the sample data. 



2. Execution of GenMiner 
To launch GenMiner, just execute the file genminer.bat on Windows or genminer on Linux 

or Mac. GenMiner can also be conveniently launched by double-clicking on the genminer.jar 

archive or by typing the command java -jar genminer.jar from the command line. 

2.1 The GenMiner interface 

 
GenMiner interface 

 

Several parameters needed by GenMiner can be specified on this window: 

• Input parameters 

o The input matrix represents the location of the file to be processed. By default, the 

file is sample_dataset.txt from the genminer folder. Another file can be selected by 

clicking on the button to the right. 

o The path to R executable contains the location of the R program. By default, the field 

is initialized with the default location of the 2.6.2 version of R on windows. Another 

location can be specified by clicking the button on the right. 

• NorDi parameters 

o The pValue is used by NorDi for determining the gene expression matrix column 

outliers using the Grubbs outliers test. 

o The proportion of expressed genes represents the quantiles for a standardized normal 

distribution corresponding to certain α for determining the upper and lower 



discretization thresholds in each column matrix. For example, with a value of 0.05, 5% 

of genes are identified as expressed and the remaining 95% are considered 

unexpressed.  

• JClose parameters 

o Minimum support is used to filter useful rules. It represents the minimum proportion 

of objects containing all items of the rule. 

o Minimum confidence is used to extract only meaningful rules. It represents the 

minimum Proportion of objects containing the consequent among those containing the 

antecedent. 

Detailed explanation of NorDi and JClose parameters can be found in the paper GenMiner: 

Non-Redundant Association Rules Mining from Genomic Data that is submitted to 

Bioinformatics. 

2.1 Results 

The execution of GenMiner is performed by clicking the execute button. The results are 

presented in three different files: 

• a file with suffix _classes.txt that contains frequent closed itemsets, 

• a file with suffix _exact.txt that contains exact associations rules, 

• a file with suffix _partial.txt that contains approximate associations rules. 

The format of these outputs is described in section 4. 

3. Input Data Format 
The data has to be presented in a matrix. The following matrix is used to describe the data in 

sample_dataset.txt: 

Gene name P1 P2 P2 V1 V2 
Gene1 good A  2.65 15.0 
Gene2 average A B 1.02 -1.85 
Gene3 good B C 3.00 -0.76 
Gene4 unknown C  0.23 1.42 
Gene5 poor C  -25.54 1.00 

The first row represents the header. The other rows are the description of objects. For each 

row, the first column identifies the object and the following columns represent the properties 

of the object. 

Cells are separated by tabs. Missing values should be left empty or identified with the 

character ‘?’. The columns that must be discretized (representing expression levels) are 

automatically identified depending on the content of the first value of each column. The rule 

is simple: the column is discretized if the first cell contains a decimal number. If the first cell 

is an integer and you want the column to be discretized, write the integer in decimal form 

(i.e.: replace 1 with 1.0). 

 

The dataset above contains the description of 5 genes with 4 properties: 

• P1 is a descriptive property that can have four different values : 'good', 'average', 'poor' or 

'unknown'      

• P2 is a multivalued descriptive property that can be assigned with one or two values from 

the following list ('A', 'B', 'C')      

• V1 and V2 are numerical values 



4. Output Format 

4.1 frequent closed itemsets 

Each line of this file represents a frequent closed itemset that is identified with its generator 

and its closure. For example, the file sample_dataset_classes.txt, obtained by applying 

GenMiner on the sample data contains the following lines: 
[V1=under] [P2=C, P1=poor, V1=under] 1 
[P1=poor] [P2=C, P1=poor, V1=under] 1 
[P1=unknown] [P2=C, P1=unknown] 1 
[P2=C] [P2=C] 3 
[P2=B] [P2=B] 2 
[P2=B, P2=C] [P1=good, P2=B, P2=C] 1 
[P1=average] [P2=A, P1=average, P2=B] 1 
[V2=over] [P1=good, P2=A, V2=over] 1 
[P2=A] [P2=A] 2 
[P2=A, P2=B] [P2=A, P1=average, P2=B] 1 
[P1=good] [P1=good] 2 
[P1=good, P2=C] [P1=good, P2=B, P2=C] 1 
[P1=good, P2=B] [P1=good, P2=B, P2=C] 1 
[P1=good, P2=A] [P1=good, P2=A, V2=over] 1 

The first line displays a frequent closed itemset that has V1=under as generator and P2=C, 
P1=poor, V1=under as closure. 

4.2 exact associations rules 

Each line of this file represents an exact rule with its antecedent, its consequent. For example, 

the file sample_dataset_exact.txt, obtained by applying GenMiner on the sample data contains 

the following lines: 
[V1=under] => [P2=C, P1=poor] supp=1 conf=1 
[P1=poor] => [P2=C, V1=under] supp=1 conf=1 
[P1=unknown] => [P2=C] supp=1 conf=1 
[P2=B, P2=C] => [P1=good] supp=1 conf=1 
[P1=average] => [P2=A, P2=B] supp=1 conf=1 
[V2=over] => [P1=good, P2=A] supp=1 conf=1 
[P2=A, P2=B] => [P1=average] supp=1 conf=1 
[P1=good, P2=C] => [P2=B] supp=1 conf=1 
[P1=good, P2=B] => [P2=C] supp=1 conf=1 
[P1=good, P2=A] => [V2=over] supp=1 conf=1 

The first line displays a rule stating that all items annotated with under for the attribute V1 are 

also annotated C for the attribute P2 and poor for the attribute P1. Support and confidence are 

both equals to 1 as this file only contains exact rules 

4.3 approximate associations rules 

Each line of this file represents a rule with its antecedent, its consequent. For example, the file 

sample_dataset_partial.txt, obtained by applying GenMiner on the sample data contains the 

following lines: 
[P2=C] -> [P1=poor, V1=under] supp=1 conf=0,33 
[P2=C] -> [P1=unknown] supp=1 conf=0,33 
[P2=C] -> [P1=good, P2=B] supp=1 conf=0,33 
[P2=B] -> [P1=good, P2=C] supp=1 conf=0,50 
[P2=B] -> [P2=A, P1=average] supp=1 conf=0,50 
[P2=A] -> [P1=average, P2=B] supp=1 conf=0,50 
[P2=A] -> [P1=good, V2=over] supp=1 conf=0,50 



[P1=good] -> [P2=B, P2=C] supp=1 conf=0,50 
[P1=good] -> [P2=A, V2=over] supp=1 conf=0,50 

The first line displays a rule stating that items annotated with C for the attribute P2 are also 

annotated poor for the attribute P1 and under for the attribute V1. The support of this rule is 1 

and the confidence is equals to 33% 

 


